Compare commits

..

9 Commits

Author SHA1 Message Date
J. Nick Koston
357ef51beb use simple lookup 2025-06-26 09:22:15 +02:00
Keith Burzinski
2fc8131164 Move consts to cpp file, arrange vars for better memory use 2025-06-26 01:45:51 -05:00
Keith Burzinski
26007175be Merge branch 'dev' into 20250625-ld2410-optimizations 2025-06-26 01:16:12 -05:00
Keith Burzinski
461e10ca3e inline 2025-06-26 00:27:05 -05:00
Keith Burzinski
205dc9c6f8 Move two_byte_to_int 2025-06-26 00:21:06 -05:00
Keith Burzinski
f5eca9ce8d Even smaller 2025-06-25 23:15:21 -05:00
Keith Burzinski
487dd6c8d1 Fix accesses 2025-06-25 23:00:18 -05:00
Keith Burzinski
67a25e56b0 Fix bluetooth state handling 2025-06-25 21:42:36 -05:00
Keith Burzinski
a27f7cd765 [ld2410] More optimizations 2025-06-25 21:17:59 -05:00
400 changed files with 3328 additions and 7862 deletions

View File

@@ -4,7 +4,7 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.12.1
rev: v0.12.0
hooks:
# Run the linter.
- id: ruff

View File

@@ -146,7 +146,6 @@ esphome/components/esp32_ble_client/* @jesserockz
esphome/components/esp32_ble_server/* @Rapsssito @clydebarrow @jesserockz
esphome/components/esp32_camera_web_server/* @ayufan
esphome/components/esp32_can/* @Sympatron
esphome/components/esp32_hosted/* @swoboda1337
esphome/components/esp32_improv/* @jesserockz
esphome/components/esp32_rmt/* @jesserockz
esphome/components/esp32_rmt_led_strip/* @jesserockz
@@ -248,7 +247,6 @@ esphome/components/libretiny_pwm/* @kuba2k2
esphome/components/light/* @esphome/core
esphome/components/lightwaverf/* @max246
esphome/components/lilygo_t5_47/touchscreen/* @jesserockz
esphome/components/ln882x/* @lamauny
esphome/components/lock/* @esphome/core
esphome/components/logger/* @esphome/core
esphome/components/logger/select/* @clydebarrow
@@ -327,14 +325,12 @@ esphome/components/opentherm/* @olegtarasov
esphome/components/openthread/* @mrene
esphome/components/opt3001/* @ccutrer
esphome/components/ota/* @esphome/core
esphome/components/ota_base/* @esphome/core
esphome/components/output/* @esphome/core
esphome/components/packet_transport/* @clydebarrow
esphome/components/pca6416a/* @Mat931
esphome/components/pca9554/* @clydebarrow @hwstar
esphome/components/pcf85063/* @brogon
esphome/components/pcf8563/* @KoenBreeman
esphome/components/pi4ioe5v6408/* @jesserockz
esphome/components/pid/* @OttoWinter
esphome/components/pipsolar/* @andreashergert1984
esphome/components/pm1006/* @habbie
@@ -495,7 +491,7 @@ esphome/components/vbus/* @ssieb
esphome/components/veml3235/* @kbx81
esphome/components/veml7700/* @latonita
esphome/components/version/* @esphome/core
esphome/components/voice_assistant/* @jesserockz @kahrendt
esphome/components/voice_assistant/* @jesserockz
esphome/components/wake_on_lan/* @clydebarrow @willwill2will54
esphome/components/watchdog/* @oarcher
esphome/components/waveshare_epaper/* @clydebarrow

View File

@@ -34,9 +34,11 @@ from esphome.const import (
CONF_PORT,
CONF_SUBSTITUTIONS,
CONF_TOPIC,
PLATFORM_BK72XX,
PLATFORM_ESP32,
PLATFORM_ESP8266,
PLATFORM_RP2040,
PLATFORM_RTL87XX,
SECRETS_FILES,
)
from esphome.core import CORE, EsphomeError, coroutine
@@ -352,7 +354,7 @@ def upload_program(config, args, host):
if CORE.target_platform in (PLATFORM_RP2040):
return upload_using_platformio(config, args.device)
if CORE.is_libretiny:
if CORE.target_platform in (PLATFORM_BK72XX, PLATFORM_RTL87XX):
return upload_using_platformio(config, host)
return 1 # Unknown target platform

View File

@@ -4,7 +4,6 @@
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include <cmath>
#include <numbers>
#ifdef USE_ESP8266
#include <core_esp8266_waveform.h>
@@ -204,7 +203,7 @@ void AcDimmer::setup() {
#endif
}
void AcDimmer::write_state(float state) {
state = std::acos(1 - (2 * state)) / std::numbers::pi; // RMS power compensation
state = std::acos(1 - (2 * state)) / 3.14159; // RMS power compensation
auto new_value = static_cast<uint16_t>(roundf(state * 65535));
if (new_value != 0 && this->store_.value == 0)
this->store_.init_cycle = this->init_with_half_cycle_;

View File

@@ -15,7 +15,8 @@ namespace adc {
#ifdef USE_ESP32
// clang-format off
#if (ESP_IDF_VERSION_MAJOR == 5 && \
#if (ESP_IDF_VERSION_MAJOR == 4 && ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 4, 7)) || \
(ESP_IDF_VERSION_MAJOR == 5 && \
((ESP_IDF_VERSION_MINOR == 0 && ESP_IDF_VERSION_PATCH >= 5) || \
(ESP_IDF_VERSION_MINOR == 1 && ESP_IDF_VERSION_PATCH >= 3) || \
(ESP_IDF_VERSION_MINOR >= 2)) \
@@ -27,24 +28,19 @@ static const adc_atten_t ADC_ATTEN_DB_12_COMPAT = ADC_ATTEN_DB_11;
#endif
#endif // USE_ESP32
enum class SamplingMode : uint8_t {
AVG = 0,
MIN = 1,
MAX = 2,
};
enum class SamplingMode : uint8_t { AVG = 0, MIN = 1, MAX = 2 };
const LogString *sampling_mode_to_str(SamplingMode mode);
class Aggregator {
public:
Aggregator(SamplingMode mode);
void add_sample(uint32_t value);
uint32_t aggregate();
Aggregator(SamplingMode mode);
protected:
SamplingMode mode_{SamplingMode::AVG};
uint32_t aggr_{0};
uint32_t samples_{0};
SamplingMode mode_{SamplingMode::AVG};
};
class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage_sampler::VoltageSampler {
@@ -85,9 +81,9 @@ class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage
#endif // USE_RP2040
protected:
uint8_t sample_count_{1};
bool output_raw_{false};
InternalGPIOPin *pin_;
bool output_raw_{false};
uint8_t sample_count_{1};
SamplingMode sampling_mode_{SamplingMode::AVG};
#ifdef USE_RP2040
@@ -99,7 +95,11 @@ class ADCSensor : public sensor::Sensor, public PollingComponent, public voltage
adc1_channel_t channel1_{ADC1_CHANNEL_MAX};
adc2_channel_t channel2_{ADC2_CHANNEL_MAX};
bool autorange_{false};
#if ESP_IDF_VERSION_MAJOR >= 5
esp_adc_cal_characteristics_t cal_characteristics_[SOC_ADC_ATTEN_NUM] = {};
#else
esp_adc_cal_characteristics_t cal_characteristics_[ADC_ATTEN_MAX] = {};
#endif // ESP_IDF_VERSION_MAJOR
#endif // USE_ESP32
};

View File

@@ -61,7 +61,7 @@ uint32_t Aggregator::aggregate() {
void ADCSensor::update() {
float value_v = this->sample();
ESP_LOGV(TAG, "'%s': Voltage=%.4fV", this->get_name().c_str(), value_v);
ESP_LOGV(TAG, "'%s': Got voltage=%.4fV", this->get_name().c_str(), value_v);
this->publish_state(value_v);
}

View File

@@ -55,40 +55,32 @@ void ADCSensor::setup() {
}
void ADCSensor::dump_config() {
static const char *const ATTEN_AUTO_STR = "auto";
static const char *const ATTEN_0DB_STR = "0 db";
static const char *const ATTEN_2_5DB_STR = "2.5 db";
static const char *const ATTEN_6DB_STR = "6 db";
static const char *const ATTEN_12DB_STR = "12 db";
const char *atten_str = ATTEN_AUTO_STR;
LOG_SENSOR("", "ADC Sensor", this);
LOG_PIN(" Pin: ", this->pin_);
if (!this->autorange_) {
if (this->autorange_) {
ESP_LOGCONFIG(TAG, " Attenuation: auto");
} else {
switch (this->attenuation_) {
case ADC_ATTEN_DB_0:
atten_str = ATTEN_0DB_STR;
ESP_LOGCONFIG(TAG, " Attenuation: 0db");
break;
case ADC_ATTEN_DB_2_5:
atten_str = ATTEN_2_5DB_STR;
ESP_LOGCONFIG(TAG, " Attenuation: 2.5db");
break;
case ADC_ATTEN_DB_6:
atten_str = ATTEN_6DB_STR;
ESP_LOGCONFIG(TAG, " Attenuation: 6db");
break;
case ADC_ATTEN_DB_12_COMPAT:
atten_str = ATTEN_12DB_STR;
ESP_LOGCONFIG(TAG, " Attenuation: 12db");
break;
default: // This is to satisfy the unused ADC_ATTEN_MAX
break;
}
}
ESP_LOGCONFIG(TAG,
" Attenuation: %s\n"
" Samples: %i\n"
" Sampling mode: %s",
atten_str, this->sample_count_, LOG_STR_ARG(sampling_mode_to_str(this->sampling_mode_)));
this->sample_count_, LOG_STR_ARG(sampling_mode_to_str(this->sampling_mode_)));
LOG_UPDATE_INTERVAL(this);
}

View File

@@ -85,6 +85,8 @@ class ADE7880 : public i2c::I2CDevice, public PollingComponent {
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
ADE7880Store store_{};
InternalGPIOPin *irq0_pin_{nullptr};

View File

@@ -49,6 +49,7 @@ class ADS1115Component : public Component, public i2c::I2CDevice {
void setup() override;
void dump_config() override;
/// HARDWARE_LATE setup priority
float get_setup_priority() const override { return setup_priority::DATA; }
void set_continuous_mode(bool continuous_mode) { continuous_mode_ = continuous_mode; }
/// Helper method to request a measurement from a sensor.

View File

@@ -34,6 +34,7 @@ class ADS1118 : public Component,
ADS1118() = default;
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
/// Helper method to request a measurement from a sensor.
float request_measurement(ADS1118Multiplexer multiplexer, ADS1118Gain gain, bool temperature_mode);

View File

@@ -31,6 +31,8 @@ class AGS10Component : public PollingComponent, public i2c::I2CDevice {
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
/**
* Modifies target address of AGS10.
*

View File

@@ -66,6 +66,7 @@ class AIC3204 : public audio_dac::AudioDac, public Component, public i2c::I2CDev
public:
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
bool set_mute_off() override;
bool set_mute_on() override;

View File

@@ -41,6 +41,7 @@ class Alpha3 : public esphome::ble_client::BLEClientNode, public PollingComponen
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_flow_sensor(sensor::Sensor *sensor) { this->flow_sensor_ = sensor; }
void set_head_sensor(sensor::Sensor *sensor) { this->head_sensor_ = sensor; }
void set_power_sensor(sensor::Sensor *sensor) { this->power_sensor_ = sensor; }

View File

@@ -22,6 +22,7 @@ class Am43Component : public cover::Cover, public esphome::ble_client::BLEClient
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
cover::CoverTraits get_traits() override;
void set_pin(uint16_t pin) { this->pin_ = pin; }
void set_invert_position(bool invert_position) { this->invert_position_ = invert_position; }

View File

@@ -22,6 +22,7 @@ class Am43 : public esphome::ble_client::BLEClientNode, public PollingComponent
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_battery(sensor::Sensor *battery) { battery_ = battery; }
void set_illuminance(sensor::Sensor *illuminance) { illuminance_ = illuminance; }

View File

@@ -12,6 +12,8 @@ class AnalogThresholdBinarySensor : public Component, public binary_sensor::Bina
void dump_config() override;
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_sensor(sensor::Sensor *analog_sensor);
template<typename T> void set_upper_threshold(T upper_threshold) { this->upper_threshold_ = upper_threshold; }
template<typename T> void set_lower_threshold(T lower_threshold) { this->lower_threshold_ = lower_threshold; }

View File

@@ -26,6 +26,7 @@ class Anova : public climate::Climate, public esphome::ble_client::BLEClientNode
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
climate::ClimateTraits traits() override {
auto traits = climate::ClimateTraits();
traits.set_supports_current_temperature(true);

View File

@@ -110,10 +110,9 @@ CONFIG_SCHEMA = cv.All(
): ACTIONS_SCHEMA,
cv.Exclusive(CONF_ACTIONS, group_of_exclusion=CONF_ACTIONS): ACTIONS_SCHEMA,
cv.Optional(CONF_ENCRYPTION): _encryption_schema,
cv.Optional(CONF_BATCH_DELAY, default="100ms"): cv.All(
cv.positive_time_period_milliseconds,
cv.Range(max=cv.TimePeriod(milliseconds=65535)),
),
cv.Optional(
CONF_BATCH_DELAY, default="100ms"
): cv.positive_time_period_milliseconds,
cv.Optional(CONF_ON_CLIENT_CONNECTED): automation.validate_automation(
single=True
),
@@ -136,26 +135,23 @@ async def to_code(config):
cg.add(var.set_reboot_timeout(config[CONF_REBOOT_TIMEOUT]))
cg.add(var.set_batch_delay(config[CONF_BATCH_DELAY]))
if actions := config.get(CONF_ACTIONS, []):
cg.add_define("USE_API_YAML_SERVICES")
for conf in actions:
template_args = []
func_args = []
service_arg_names = []
for name, var_ in conf[CONF_VARIABLES].items():
native = SERVICE_ARG_NATIVE_TYPES[var_]
template_args.append(native)
func_args.append((native, name))
service_arg_names.append(name)
templ = cg.TemplateArguments(*template_args)
trigger = cg.new_Pvariable(
conf[CONF_TRIGGER_ID], templ, conf[CONF_ACTION], service_arg_names
)
cg.add(var.register_user_service(trigger))
await automation.build_automation(trigger, func_args, conf)
for conf in config.get(CONF_ACTIONS, []):
template_args = []
func_args = []
service_arg_names = []
for name, var_ in conf[CONF_VARIABLES].items():
native = SERVICE_ARG_NATIVE_TYPES[var_]
template_args.append(native)
func_args.append((native, name))
service_arg_names.append(name)
templ = cg.TemplateArguments(*template_args)
trigger = cg.new_Pvariable(
conf[CONF_TRIGGER_ID], templ, conf[CONF_ACTION], service_arg_names
)
cg.add(var.register_user_service(trigger))
await automation.build_automation(trigger, func_args, conf)
if CONF_ON_CLIENT_CONNECTED in config:
cg.add_define("USE_API_CLIENT_CONNECTED_TRIGGER")
await automation.build_automation(
var.get_client_connected_trigger(),
[(cg.std_string, "client_info"), (cg.std_string, "client_address")],
@@ -163,7 +159,6 @@ async def to_code(config):
)
if CONF_ON_CLIENT_DISCONNECTED in config:
cg.add_define("USE_API_CLIENT_DISCONNECTED_TRIGGER")
await automation.build_automation(
var.get_client_disconnected_trigger(),
[(cg.std_string, "client_info"), (cg.std_string, "client_address")],
@@ -182,7 +177,7 @@ async def to_code(config):
# and plaintext disabled. Only a factory reset can remove it.
cg.add_define("USE_API_PLAINTEXT")
cg.add_define("USE_API_NOISE")
cg.add_library("esphome/noise-c", "0.1.10")
cg.add_library("esphome/noise-c", "0.1.6")
else:
cg.add_define("USE_API_PLAINTEXT")

View File

@@ -65,6 +65,10 @@ uint32_t APIConnection::get_batch_delay_ms_() const { return this->parent_->get_
void APIConnection::start() {
this->last_traffic_ = App.get_loop_component_start_time();
// Set next_ping_retry_ to prevent immediate ping
// This ensures the first ping happens after the keepalive period
this->next_ping_retry_ = this->last_traffic_ + KEEPALIVE_TIMEOUT_MS;
APIError err = this->helper_->init();
if (err != APIError::OK) {
on_fatal_error();
@@ -90,24 +94,11 @@ APIConnection::~APIConnection() {
#endif
}
#ifdef HAS_PROTO_MESSAGE_DUMP
void APIConnection::log_batch_item_(const DeferredBatch::BatchItem &item) {
// Set log-only mode
this->flags_.log_only_mode = true;
// Call the creator - it will create the message and log it via encode_message_to_buffer
item.creator(item.entity, this, std::numeric_limits<uint16_t>::max(), true, item.message_type);
// Clear log-only mode
this->flags_.log_only_mode = false;
}
#endif
void APIConnection::loop() {
if (this->flags_.next_close) {
if (this->next_close_) {
// requested a disconnect
this->helper_->close();
this->flags_.remove = true;
this->remove_ = true;
return;
}
@@ -148,14 +139,15 @@ void APIConnection::loop() {
} else {
this->read_message(0, buffer.type, nullptr);
}
if (this->flags_.remove)
if (this->remove_)
return;
}
}
}
// Process deferred batch if scheduled
if (this->flags_.batch_scheduled && now - this->deferred_batch_.batch_start_time >= this->get_batch_delay_ms_()) {
if (this->deferred_batch_.batch_scheduled &&
now - this->deferred_batch_.batch_start_time >= this->get_batch_delay_ms_()) {
this->process_batch_();
}
@@ -165,21 +157,26 @@ void APIConnection::loop() {
this->initial_state_iterator_.advance();
}
if (this->flags_.sent_ping) {
if (this->sent_ping_) {
// Disconnect if not responded within 2.5*keepalive
if (now - this->last_traffic_ > KEEPALIVE_DISCONNECT_TIMEOUT) {
on_fatal_error();
ESP_LOGW(TAG, "%s is unresponsive; disconnecting", this->get_client_combined_info().c_str());
}
} else if (now - this->last_traffic_ > KEEPALIVE_TIMEOUT_MS) {
} else if (now - this->last_traffic_ > KEEPALIVE_TIMEOUT_MS && now > this->next_ping_retry_) {
ESP_LOGVV(TAG, "Sending keepalive PING");
this->flags_.sent_ping = this->send_message(PingRequest());
if (!this->flags_.sent_ping) {
// If we can't send the ping request directly (tx_buffer full),
// schedule it at the front of the batch so it will be sent with priority
ESP_LOGW(TAG, "Buffer full, ping queued");
this->schedule_message_front_(nullptr, &APIConnection::try_send_ping_request, PingRequest::MESSAGE_TYPE);
this->flags_.sent_ping = true; // Mark as sent to avoid scheduling multiple pings
this->sent_ping_ = this->send_message(PingRequest());
if (!this->sent_ping_) {
this->next_ping_retry_ = now + PING_RETRY_INTERVAL;
this->ping_retries_++;
if (this->ping_retries_ >= MAX_PING_RETRIES) {
on_fatal_error();
ESP_LOGE(TAG, "%s: Ping failed %u times", this->get_client_combined_info().c_str(), this->ping_retries_);
} else if (this->ping_retries_ >= 10) {
ESP_LOGW(TAG, "%s: Ping retry %u", this->get_client_combined_info().c_str(), this->ping_retries_);
} else {
ESP_LOGD(TAG, "%s: Ping retry %u", this->get_client_combined_info().c_str(), this->ping_retries_);
}
}
}
@@ -239,27 +236,19 @@ DisconnectResponse APIConnection::disconnect(const DisconnectRequest &msg) {
// don't close yet, we still need to send the disconnect response
// close will happen on next loop
ESP_LOGD(TAG, "%s disconnected", this->get_client_combined_info().c_str());
this->flags_.next_close = true;
this->next_close_ = true;
DisconnectResponse resp;
return resp;
}
void APIConnection::on_disconnect_response(const DisconnectResponse &value) {
this->helper_->close();
this->flags_.remove = true;
this->remove_ = true;
}
// Encodes a message to the buffer and returns the total number of bytes used,
// including header and footer overhead. Returns 0 if the message doesn't fit.
uint16_t APIConnection::encode_message_to_buffer(ProtoMessage &msg, uint16_t message_type, APIConnection *conn,
uint32_t remaining_size, bool is_single) {
#ifdef HAS_PROTO_MESSAGE_DUMP
// If in log-only mode, just log and return
if (conn->flags_.log_only_mode) {
conn->log_send_message_(msg.message_name(), msg.dump());
return 1; // Return non-zero to indicate "success" for logging
}
#endif
// Calculate size
uint32_t calculated_size = 0;
msg.calculate_size(calculated_size);
@@ -287,6 +276,11 @@ uint16_t APIConnection::encode_message_to_buffer(ProtoMessage &msg, uint16_t mes
// Encode directly into buffer
msg.encode(buffer);
#ifdef HAS_PROTO_MESSAGE_DUMP
// Log the message for VV debugging
conn->log_send_message_(msg.message_name(), msg.dump());
#endif
// Calculate actual encoded size (not including header that was already added)
size_t actual_payload_size = shared_buf.size() - size_before_encode;
@@ -303,6 +297,10 @@ bool APIConnection::send_binary_sensor_state(binary_sensor::BinarySensor *binary
return this->schedule_message_(binary_sensor, &APIConnection::try_send_binary_sensor_state,
BinarySensorStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_binary_sensor_info(binary_sensor::BinarySensor *binary_sensor) {
this->schedule_message_(binary_sensor, &APIConnection::try_send_binary_sensor_info,
ListEntitiesBinarySensorResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_binary_sensor_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -330,6 +328,9 @@ uint16_t APIConnection::try_send_binary_sensor_info(EntityBase *entity, APIConne
bool APIConnection::send_cover_state(cover::Cover *cover) {
return this->schedule_message_(cover, &APIConnection::try_send_cover_state, CoverStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_cover_info(cover::Cover *cover) {
this->schedule_message_(cover, &APIConnection::try_send_cover_info, ListEntitiesCoverResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_cover_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *cover = static_cast<cover::Cover *>(entity);
@@ -391,6 +392,9 @@ void APIConnection::cover_command(const CoverCommandRequest &msg) {
bool APIConnection::send_fan_state(fan::Fan *fan) {
return this->schedule_message_(fan, &APIConnection::try_send_fan_state, FanStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_fan_info(fan::Fan *fan) {
this->schedule_message_(fan, &APIConnection::try_send_fan_info, ListEntitiesFanResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_fan_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *fan = static_cast<fan::Fan *>(entity);
@@ -450,6 +454,9 @@ void APIConnection::fan_command(const FanCommandRequest &msg) {
bool APIConnection::send_light_state(light::LightState *light) {
return this->schedule_message_(light, &APIConnection::try_send_light_state, LightStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_light_info(light::LightState *light) {
this->schedule_message_(light, &APIConnection::try_send_light_info, ListEntitiesLightResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_light_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *light = static_cast<light::LightState *>(entity);
@@ -542,6 +549,9 @@ void APIConnection::light_command(const LightCommandRequest &msg) {
bool APIConnection::send_sensor_state(sensor::Sensor *sensor) {
return this->schedule_message_(sensor, &APIConnection::try_send_sensor_state, SensorStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_sensor_info(sensor::Sensor *sensor) {
this->schedule_message_(sensor, &APIConnection::try_send_sensor_info, ListEntitiesSensorResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_sensor_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -574,6 +584,9 @@ uint16_t APIConnection::try_send_sensor_info(EntityBase *entity, APIConnection *
bool APIConnection::send_switch_state(switch_::Switch *a_switch) {
return this->schedule_message_(a_switch, &APIConnection::try_send_switch_state, SwitchStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_switch_info(switch_::Switch *a_switch) {
this->schedule_message_(a_switch, &APIConnection::try_send_switch_info, ListEntitiesSwitchResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_switch_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -612,6 +625,10 @@ bool APIConnection::send_text_sensor_state(text_sensor::TextSensor *text_sensor)
return this->schedule_message_(text_sensor, &APIConnection::try_send_text_sensor_state,
TextSensorStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_text_sensor_info(text_sensor::TextSensor *text_sensor) {
this->schedule_message_(text_sensor, &APIConnection::try_send_text_sensor_info,
ListEntitiesTextSensorResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_text_sensor_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -672,6 +689,9 @@ uint16_t APIConnection::try_send_climate_state(EntityBase *entity, APIConnection
resp.target_humidity = climate->target_humidity;
return encode_message_to_buffer(resp, ClimateStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_climate_info(climate::Climate *climate) {
this->schedule_message_(climate, &APIConnection::try_send_climate_info, ListEntitiesClimateResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_climate_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *climate = static_cast<climate::Climate *>(entity);
@@ -739,6 +759,9 @@ void APIConnection::climate_command(const ClimateCommandRequest &msg) {
bool APIConnection::send_number_state(number::Number *number) {
return this->schedule_message_(number, &APIConnection::try_send_number_state, NumberStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_number_info(number::Number *number) {
this->schedule_message_(number, &APIConnection::try_send_number_info, ListEntitiesNumberResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_number_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -790,6 +813,9 @@ uint16_t APIConnection::try_send_date_state(EntityBase *entity, APIConnection *c
fill_entity_state_base(date, resp);
return encode_message_to_buffer(resp, DateStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_date_info(datetime::DateEntity *date) {
this->schedule_message_(date, &APIConnection::try_send_date_info, ListEntitiesDateResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_date_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *date = static_cast<datetime::DateEntity *>(entity);
@@ -824,6 +850,9 @@ uint16_t APIConnection::try_send_time_state(EntityBase *entity, APIConnection *c
fill_entity_state_base(time, resp);
return encode_message_to_buffer(resp, TimeStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_time_info(datetime::TimeEntity *time) {
this->schedule_message_(time, &APIConnection::try_send_time_info, ListEntitiesTimeResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_time_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *time = static_cast<datetime::TimeEntity *>(entity);
@@ -860,6 +889,9 @@ uint16_t APIConnection::try_send_datetime_state(EntityBase *entity, APIConnectio
fill_entity_state_base(datetime, resp);
return encode_message_to_buffer(resp, DateTimeStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_datetime_info(datetime::DateTimeEntity *datetime) {
this->schedule_message_(datetime, &APIConnection::try_send_datetime_info, ListEntitiesDateTimeResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_datetime_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *datetime = static_cast<datetime::DateTimeEntity *>(entity);
@@ -883,6 +915,9 @@ void APIConnection::datetime_command(const DateTimeCommandRequest &msg) {
bool APIConnection::send_text_state(text::Text *text) {
return this->schedule_message_(text, &APIConnection::try_send_text_state, TextStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_text_info(text::Text *text) {
this->schedule_message_(text, &APIConnection::try_send_text_info, ListEntitiesTextResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_text_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -921,6 +956,9 @@ void APIConnection::text_command(const TextCommandRequest &msg) {
bool APIConnection::send_select_state(select::Select *select) {
return this->schedule_message_(select, &APIConnection::try_send_select_state, SelectStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_select_info(select::Select *select) {
this->schedule_message_(select, &APIConnection::try_send_select_info, ListEntitiesSelectResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_select_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -954,6 +992,9 @@ void APIConnection::select_command(const SelectCommandRequest &msg) {
#endif
#ifdef USE_BUTTON
void esphome::api::APIConnection::send_button_info(button::Button *button) {
this->schedule_message_(button, &APIConnection::try_send_button_info, ListEntitiesButtonResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_button_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *button = static_cast<button::Button *>(entity);
@@ -976,6 +1017,9 @@ void esphome::api::APIConnection::button_command(const ButtonCommandRequest &msg
bool APIConnection::send_lock_state(lock::Lock *a_lock) {
return this->schedule_message_(a_lock, &APIConnection::try_send_lock_state, LockStateResponse::MESSAGE_TYPE);
}
void APIConnection::send_lock_info(lock::Lock *a_lock) {
this->schedule_message_(a_lock, &APIConnection::try_send_lock_info, ListEntitiesLockResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_lock_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
@@ -1029,6 +1073,9 @@ uint16_t APIConnection::try_send_valve_state(EntityBase *entity, APIConnection *
fill_entity_state_base(valve, resp);
return encode_message_to_buffer(resp, ValveStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_valve_info(valve::Valve *valve) {
this->schedule_message_(valve, &APIConnection::try_send_valve_info, ListEntitiesValveResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_valve_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *valve = static_cast<valve::Valve *>(entity);
@@ -1074,6 +1121,10 @@ uint16_t APIConnection::try_send_media_player_state(EntityBase *entity, APIConne
fill_entity_state_base(media_player, resp);
return encode_message_to_buffer(resp, MediaPlayerStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_media_player_info(media_player::MediaPlayer *media_player) {
this->schedule_message_(media_player, &APIConnection::try_send_media_player_info,
ListEntitiesMediaPlayerResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_media_player_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *media_player = static_cast<media_player::MediaPlayer *>(entity);
@@ -1117,7 +1168,7 @@ void APIConnection::media_player_command(const MediaPlayerCommandRequest &msg) {
#ifdef USE_ESP32_CAMERA
void APIConnection::set_camera_state(std::shared_ptr<esp32_camera::CameraImage> image) {
if (!this->flags_.state_subscription)
if (!this->state_subscription_)
return;
if (this->image_reader_.available())
return;
@@ -1125,6 +1176,9 @@ void APIConnection::set_camera_state(std::shared_ptr<esp32_camera::CameraImage>
image->was_requested_by(esphome::esp32_camera::IDLE))
this->image_reader_.set_image(std::move(image));
}
void APIConnection::send_camera_info(esp32_camera::ESP32Camera *camera) {
this->schedule_message_(camera, &APIConnection::try_send_camera_info, ListEntitiesCameraResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_camera_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *camera = static_cast<esp32_camera::ESP32Camera *>(entity);
@@ -1331,6 +1385,10 @@ uint16_t APIConnection::try_send_alarm_control_panel_state(EntityBase *entity, A
fill_entity_state_base(a_alarm_control_panel, resp);
return encode_message_to_buffer(resp, AlarmControlPanelStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_alarm_control_panel_info(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel) {
this->schedule_message_(a_alarm_control_panel, &APIConnection::try_send_alarm_control_panel_info,
ListEntitiesAlarmControlPanelResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_alarm_control_panel_info(EntityBase *entity, APIConnection *conn,
uint32_t remaining_size, bool is_single) {
auto *a_alarm_control_panel = static_cast<alarm_control_panel::AlarmControlPanel *>(entity);
@@ -1381,6 +1439,9 @@ void APIConnection::alarm_control_panel_command(const AlarmControlPanelCommandRe
void APIConnection::send_event(event::Event *event, const std::string &event_type) {
this->schedule_message_(event, MessageCreator(event_type), EventResponse::MESSAGE_TYPE);
}
void APIConnection::send_event_info(event::Event *event) {
this->schedule_message_(event, &APIConnection::try_send_event_info, ListEntitiesEventResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_event_response(event::Event *event, const std::string &event_type, APIConnection *conn,
uint32_t remaining_size, bool is_single) {
EventResponse resp;
@@ -1426,6 +1487,9 @@ uint16_t APIConnection::try_send_update_state(EntityBase *entity, APIConnection
fill_entity_state_base(update, resp);
return encode_message_to_buffer(resp, UpdateStateResponse::MESSAGE_TYPE, conn, remaining_size, is_single);
}
void APIConnection::send_update_info(update::UpdateEntity *update) {
this->schedule_message_(update, &APIConnection::try_send_update_info, ListEntitiesUpdateResponse::MESSAGE_TYPE);
}
uint16_t APIConnection::try_send_update_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
auto *update = static_cast<update::UpdateEntity *>(entity);
@@ -1458,7 +1522,7 @@ void APIConnection::update_command(const UpdateCommandRequest &msg) {
#endif
bool APIConnection::try_send_log_message(int level, const char *tag, const char *line) {
if (this->flags_.log_subscription < level)
if (this->log_subscription_ < level)
return false;
// Pre-calculate message size to avoid reallocations
@@ -1499,7 +1563,7 @@ HelloResponse APIConnection::hello(const HelloRequest &msg) {
resp.server_info = App.get_name() + " (esphome v" ESPHOME_VERSION ")";
resp.name = App.get_name();
this->flags_.connection_state = static_cast<uint8_t>(ConnectionState::CONNECTED);
this->connection_state_ = ConnectionState::CONNECTED;
return resp;
}
ConnectResponse APIConnection::connect(const ConnectRequest &msg) {
@@ -1510,10 +1574,8 @@ ConnectResponse APIConnection::connect(const ConnectRequest &msg) {
resp.invalid_password = !correct;
if (correct) {
ESP_LOGD(TAG, "%s connected", this->get_client_combined_info().c_str());
this->flags_.connection_state = static_cast<uint8_t>(ConnectionState::AUTHENTICATED);
#ifdef USE_API_CLIENT_CONNECTED_TRIGGER
this->connection_state_ = ConnectionState::AUTHENTICATED;
this->parent_->get_client_connected_trigger()->trigger(this->client_info_, this->client_peername_);
#endif
#ifdef USE_HOMEASSISTANT_TIME
if (homeassistant::global_homeassistant_time != nullptr) {
this->send_time_request();
@@ -1537,8 +1599,6 @@ DeviceInfoResponse APIConnection::device_info(const DeviceInfoRequest &msg) {
resp.manufacturer = "Raspberry Pi";
#elif defined(USE_BK72XX)
resp.manufacturer = "Beken";
#elif defined(USE_LN882X)
resp.manufacturer = "Lightning";
#elif defined(USE_RTL87XX)
resp.manufacturer = "Realtek";
#elif defined(USE_HOST)
@@ -1628,7 +1688,7 @@ void APIConnection::subscribe_home_assistant_states(const SubscribeHomeAssistant
state_subs_at_ = 0;
}
bool APIConnection::try_to_clear_buffer(bool log_out_of_space) {
if (this->flags_.remove)
if (this->remove_)
return false;
if (this->helper_->can_write_without_blocking())
return true;
@@ -1678,7 +1738,7 @@ void APIConnection::on_no_setup_connection() {
}
void APIConnection::on_fatal_error() {
this->helper_->close();
this->flags_.remove = true;
this->remove_ = true;
}
void APIConnection::DeferredBatch::add_item(EntityBase *entity, MessageCreator creator, uint16_t message_type) {
@@ -1687,9 +1747,7 @@ void APIConnection::DeferredBatch::add_item(EntityBase *entity, MessageCreator c
// O(n) but optimized for RAM and not performance.
for (auto &item : items) {
if (item.entity == entity && item.message_type == message_type) {
// Clean up old creator before replacing
item.creator.cleanup(message_type);
// Move assign the new creator
// Update the existing item with the new creator
item.creator = std::move(creator);
return;
}
@@ -1699,14 +1757,9 @@ void APIConnection::DeferredBatch::add_item(EntityBase *entity, MessageCreator c
items.emplace_back(entity, std::move(creator), message_type);
}
void APIConnection::DeferredBatch::add_item_front(EntityBase *entity, MessageCreator creator, uint16_t message_type) {
// Insert at front for high priority messages (no deduplication check)
items.insert(items.begin(), BatchItem(entity, std::move(creator), message_type));
}
bool APIConnection::schedule_batch_() {
if (!this->flags_.batch_scheduled) {
this->flags_.batch_scheduled = true;
if (!this->deferred_batch_.batch_scheduled) {
this->deferred_batch_.batch_scheduled = true;
this->deferred_batch_.batch_start_time = App.get_loop_component_start_time();
}
return true;
@@ -1715,14 +1768,14 @@ bool APIConnection::schedule_batch_() {
ProtoWriteBuffer APIConnection::allocate_single_message_buffer(uint16_t size) { return this->create_buffer(size); }
ProtoWriteBuffer APIConnection::allocate_batch_message_buffer(uint16_t size) {
ProtoWriteBuffer result = this->prepare_message_buffer(size, this->flags_.batch_first_message);
this->flags_.batch_first_message = false;
ProtoWriteBuffer result = this->prepare_message_buffer(size, this->batch_first_message_);
this->batch_first_message_ = false;
return result;
}
void APIConnection::process_batch_() {
if (this->deferred_batch_.empty()) {
this->flags_.batch_scheduled = false;
this->deferred_batch_.batch_scheduled = false;
return;
}
@@ -1732,11 +1785,11 @@ void APIConnection::process_batch_() {
return;
}
size_t num_items = this->deferred_batch_.size();
size_t num_items = this->deferred_batch_.items.size();
// Fast path for single message - allocate exact size needed
if (num_items == 1) {
const auto &item = this->deferred_batch_[0];
const auto &item = this->deferred_batch_.items[0];
// Let the creator calculate size and encode if it fits
uint16_t payload_size =
@@ -1766,8 +1819,7 @@ void APIConnection::process_batch_() {
// Pre-calculate exact buffer size needed based on message types
uint32_t total_estimated_size = 0;
for (size_t i = 0; i < this->deferred_batch_.size(); i++) {
const auto &item = this->deferred_batch_[i];
for (const auto &item : this->deferred_batch_.items) {
total_estimated_size += get_estimated_message_size(item.message_type);
}
@@ -1776,7 +1828,7 @@ void APIConnection::process_batch_() {
// Reserve based on estimated size (much more accurate than 24-byte worst-case)
this->parent_->get_shared_buffer_ref().reserve(total_estimated_size + total_overhead);
this->flags_.batch_first_message = true;
this->batch_first_message_ = true;
size_t items_processed = 0;
uint16_t remaining_size = std::numeric_limits<uint16_t>::max();
@@ -1788,8 +1840,7 @@ void APIConnection::process_batch_() {
uint32_t current_offset = 0;
// Process items and encode directly to buffer
for (size_t i = 0; i < this->deferred_batch_.size(); i++) {
const auto &item = this->deferred_batch_[i];
for (const auto &item : this->deferred_batch_.items) {
// Try to encode message
// The creator will calculate overhead to determine if the message fits
uint16_t payload_size = item.creator(item.entity, this, remaining_size, false, item.message_type);
@@ -1840,19 +1891,12 @@ void APIConnection::process_batch_() {
}
}
#ifdef HAS_PROTO_MESSAGE_DUMP
// Log messages after send attempt for VV debugging
// It's safe to use the buffer for logging at this point regardless of send result
for (size_t i = 0; i < items_processed; i++) {
const auto &item = this->deferred_batch_[i];
this->log_batch_item_(item);
}
#endif
// Handle remaining items more efficiently
if (items_processed < this->deferred_batch_.size()) {
// Remove processed items from the beginning with proper cleanup
this->deferred_batch_.remove_front(items_processed);
if (items_processed < this->deferred_batch_.items.size()) {
// Remove processed items from the beginning
this->deferred_batch_.items.erase(this->deferred_batch_.items.begin(),
this->deferred_batch_.items.begin() + items_processed);
// Reschedule for remaining items
this->schedule_batch_();
} else {
@@ -1863,16 +1907,23 @@ void APIConnection::process_batch_() {
uint16_t APIConnection::MessageCreator::operator()(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single, uint16_t message_type) const {
if (has_tagged_string_ptr_()) {
// Handle string-based messages
switch (message_type) {
#ifdef USE_EVENT
// Special case: EventResponse uses string pointer
if (message_type == EventResponse::MESSAGE_TYPE) {
auto *e = static_cast<event::Event *>(entity);
return APIConnection::try_send_event_response(e, *data_.string_ptr, conn, remaining_size, is_single);
}
case EventResponse::MESSAGE_TYPE: {
auto *e = static_cast<event::Event *>(entity);
return APIConnection::try_send_event_response(e, *get_string_ptr_(), conn, remaining_size, is_single);
}
#endif
// All other message types use function pointers
return data_.function_ptr(entity, conn, remaining_size, is_single);
default:
// Should not happen, return 0 to indicate no message
return 0;
}
} else {
// Function pointer case
return data_.ptr(entity, conn, remaining_size, is_single);
}
}
uint16_t APIConnection::try_send_list_info_done(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
@@ -1887,12 +1938,6 @@ uint16_t APIConnection::try_send_disconnect_request(EntityBase *entity, APIConne
return encode_message_to_buffer(req, DisconnectRequest::MESSAGE_TYPE, conn, remaining_size, is_single);
}
uint16_t APIConnection::try_send_ping_request(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single) {
PingRequest req;
return encode_message_to_buffer(req, PingRequest::MESSAGE_TYPE, conn, remaining_size, is_single);
}
uint16_t APIConnection::get_estimated_message_size(uint16_t message_type) {
// Use generated ESTIMATED_SIZE constants from each message type
switch (message_type) {

View File

@@ -22,7 +22,6 @@ static constexpr uint32_t KEEPALIVE_TIMEOUT_MS = 60000;
class APIConnection : public APIServerConnection {
public:
friend class APIServer;
friend class ListEntitiesIterator;
APIConnection(std::unique_ptr<socket::Socket> socket, APIServer *parent);
virtual ~APIConnection();
@@ -35,79 +34,98 @@ class APIConnection : public APIServerConnection {
}
#ifdef USE_BINARY_SENSOR
bool send_binary_sensor_state(binary_sensor::BinarySensor *binary_sensor);
void send_binary_sensor_info(binary_sensor::BinarySensor *binary_sensor);
#endif
#ifdef USE_COVER
bool send_cover_state(cover::Cover *cover);
void send_cover_info(cover::Cover *cover);
void cover_command(const CoverCommandRequest &msg) override;
#endif
#ifdef USE_FAN
bool send_fan_state(fan::Fan *fan);
void send_fan_info(fan::Fan *fan);
void fan_command(const FanCommandRequest &msg) override;
#endif
#ifdef USE_LIGHT
bool send_light_state(light::LightState *light);
void send_light_info(light::LightState *light);
void light_command(const LightCommandRequest &msg) override;
#endif
#ifdef USE_SENSOR
bool send_sensor_state(sensor::Sensor *sensor);
void send_sensor_info(sensor::Sensor *sensor);
#endif
#ifdef USE_SWITCH
bool send_switch_state(switch_::Switch *a_switch);
void send_switch_info(switch_::Switch *a_switch);
void switch_command(const SwitchCommandRequest &msg) override;
#endif
#ifdef USE_TEXT_SENSOR
bool send_text_sensor_state(text_sensor::TextSensor *text_sensor);
void send_text_sensor_info(text_sensor::TextSensor *text_sensor);
#endif
#ifdef USE_ESP32_CAMERA
void set_camera_state(std::shared_ptr<esp32_camera::CameraImage> image);
void send_camera_info(esp32_camera::ESP32Camera *camera);
void camera_image(const CameraImageRequest &msg) override;
#endif
#ifdef USE_CLIMATE
bool send_climate_state(climate::Climate *climate);
void send_climate_info(climate::Climate *climate);
void climate_command(const ClimateCommandRequest &msg) override;
#endif
#ifdef USE_NUMBER
bool send_number_state(number::Number *number);
void send_number_info(number::Number *number);
void number_command(const NumberCommandRequest &msg) override;
#endif
#ifdef USE_DATETIME_DATE
bool send_date_state(datetime::DateEntity *date);
void send_date_info(datetime::DateEntity *date);
void date_command(const DateCommandRequest &msg) override;
#endif
#ifdef USE_DATETIME_TIME
bool send_time_state(datetime::TimeEntity *time);
void send_time_info(datetime::TimeEntity *time);
void time_command(const TimeCommandRequest &msg) override;
#endif
#ifdef USE_DATETIME_DATETIME
bool send_datetime_state(datetime::DateTimeEntity *datetime);
void send_datetime_info(datetime::DateTimeEntity *datetime);
void datetime_command(const DateTimeCommandRequest &msg) override;
#endif
#ifdef USE_TEXT
bool send_text_state(text::Text *text);
void send_text_info(text::Text *text);
void text_command(const TextCommandRequest &msg) override;
#endif
#ifdef USE_SELECT
bool send_select_state(select::Select *select);
void send_select_info(select::Select *select);
void select_command(const SelectCommandRequest &msg) override;
#endif
#ifdef USE_BUTTON
void send_button_info(button::Button *button);
void button_command(const ButtonCommandRequest &msg) override;
#endif
#ifdef USE_LOCK
bool send_lock_state(lock::Lock *a_lock);
void send_lock_info(lock::Lock *a_lock);
void lock_command(const LockCommandRequest &msg) override;
#endif
#ifdef USE_VALVE
bool send_valve_state(valve::Valve *valve);
void send_valve_info(valve::Valve *valve);
void valve_command(const ValveCommandRequest &msg) override;
#endif
#ifdef USE_MEDIA_PLAYER
bool send_media_player_state(media_player::MediaPlayer *media_player);
void send_media_player_info(media_player::MediaPlayer *media_player);
void media_player_command(const MediaPlayerCommandRequest &msg) override;
#endif
bool try_send_log_message(int level, const char *tag, const char *line);
void send_homeassistant_service_call(const HomeassistantServiceResponse &call) {
if (!this->flags_.service_call_subscription)
if (!this->service_call_subscription_)
return;
this->send_message(call);
}
@@ -149,22 +167,26 @@ class APIConnection : public APIServerConnection {
#ifdef USE_ALARM_CONTROL_PANEL
bool send_alarm_control_panel_state(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel);
void send_alarm_control_panel_info(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel);
void alarm_control_panel_command(const AlarmControlPanelCommandRequest &msg) override;
#endif
#ifdef USE_EVENT
void send_event(event::Event *event, const std::string &event_type);
void send_event_info(event::Event *event);
#endif
#ifdef USE_UPDATE
bool send_update_state(update::UpdateEntity *update);
void send_update_info(update::UpdateEntity *update);
void update_command(const UpdateCommandRequest &msg) override;
#endif
void on_disconnect_response(const DisconnectResponse &value) override;
void on_ping_response(const PingResponse &value) override {
// we initiated ping
this->flags_.sent_ping = false;
this->ping_retries_ = 0;
this->sent_ping_ = false;
}
void on_home_assistant_state_response(const HomeAssistantStateResponse &msg) override;
#ifdef USE_HOMEASSISTANT_TIME
@@ -177,16 +199,16 @@ class APIConnection : public APIServerConnection {
DeviceInfoResponse device_info(const DeviceInfoRequest &msg) override;
void list_entities(const ListEntitiesRequest &msg) override { this->list_entities_iterator_.begin(); }
void subscribe_states(const SubscribeStatesRequest &msg) override {
this->flags_.state_subscription = true;
this->state_subscription_ = true;
this->initial_state_iterator_.begin();
}
void subscribe_logs(const SubscribeLogsRequest &msg) override {
this->flags_.log_subscription = msg.level;
this->log_subscription_ = msg.level;
if (msg.dump_config)
App.schedule_dump_config();
}
void subscribe_homeassistant_services(const SubscribeHomeassistantServicesRequest &msg) override {
this->flags_.service_call_subscription = true;
this->service_call_subscription_ = true;
}
void subscribe_home_assistant_states(const SubscribeHomeAssistantStatesRequest &msg) override;
GetTimeResponse get_time(const GetTimeRequest &msg) override {
@@ -198,12 +220,9 @@ class APIConnection : public APIServerConnection {
NoiseEncryptionSetKeyResponse noise_encryption_set_key(const NoiseEncryptionSetKeyRequest &msg) override;
#endif
bool is_authenticated() override {
return static_cast<ConnectionState>(this->flags_.connection_state) == ConnectionState::AUTHENTICATED;
}
bool is_authenticated() override { return this->connection_state_ == ConnectionState::AUTHENTICATED; }
bool is_connection_setup() override {
return static_cast<ConnectionState>(this->flags_.connection_state) == ConnectionState::CONNECTED ||
this->is_authenticated();
return this->connection_state_ == ConnectionState ::CONNECTED || this->is_authenticated();
}
void on_fatal_error() override;
void on_unauthenticated_access() override;
@@ -422,82 +441,138 @@ class APIConnection : public APIServerConnection {
// Helper function to get estimated message size for buffer pre-allocation
static uint16_t get_estimated_message_size(uint16_t message_type);
// Batch message method for ping requests
static uint16_t try_send_ping_request(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single);
// === Optimal member ordering for 32-bit systems ===
// Group 1: Pointers (4 bytes each on 32-bit)
// Pointers first (4 bytes each, naturally aligned)
std::unique_ptr<APIFrameHelper> helper_;
APIServer *parent_;
// Group 2: Larger objects (must be 4-byte aligned)
// These contain vectors/pointers internally, so putting them early ensures good alignment
// 4-byte aligned types
uint32_t last_traffic_;
uint32_t next_ping_retry_{0};
int state_subs_at_ = -1;
// Strings (12 bytes each on 32-bit)
std::string client_info_;
std::string client_peername_;
// 2-byte aligned types
uint16_t client_api_version_major_{0};
uint16_t client_api_version_minor_{0};
// Group all 1-byte types together to minimize padding
enum class ConnectionState : uint8_t {
WAITING_FOR_HELLO,
CONNECTED,
AUTHENTICATED,
} connection_state_{ConnectionState::WAITING_FOR_HELLO};
uint8_t log_subscription_{ESPHOME_LOG_LEVEL_NONE};
bool remove_{false};
bool state_subscription_{false};
bool sent_ping_{false};
bool service_call_subscription_{false};
bool next_close_ = false;
uint8_t ping_retries_{0};
// 8 bytes used, no padding needed
// Larger objects at the end
InitialStateIterator initial_state_iterator_;
ListEntitiesIterator list_entities_iterator_;
#ifdef USE_ESP32_CAMERA
esp32_camera::CameraImageReader image_reader_;
#endif
// Group 3: Strings (12 bytes each on 32-bit, 4-byte aligned)
std::string client_info_;
std::string client_peername_;
// Group 4: 4-byte types
uint32_t last_traffic_;
int state_subs_at_ = -1;
// Function pointer type for message encoding
using MessageCreatorPtr = uint16_t (*)(EntityBase *, APIConnection *, uint32_t remaining_size, bool is_single);
// Optimized MessageCreator class using tagged pointer
class MessageCreator {
// Ensure pointer alignment allows LSB tagging
static_assert(alignof(std::string *) > 1, "String pointer alignment must be > 1 for LSB tagging");
public:
// Constructor for function pointer
MessageCreator(MessageCreatorPtr ptr) { data_.function_ptr = ptr; }
MessageCreator(MessageCreatorPtr ptr) {
// Function pointers are always aligned, so LSB is 0
data_.ptr = ptr;
}
// Constructor for string state capture
explicit MessageCreator(const std::string &str_value) { data_.string_ptr = new std::string(str_value); }
explicit MessageCreator(const std::string &str_value) {
// Allocate string and tag the pointer
auto *str = new std::string(str_value);
// Set LSB to 1 to indicate string pointer
data_.tagged = reinterpret_cast<uintptr_t>(str) | 1;
}
// No destructor - cleanup must be called explicitly with message_type
// Destructor
~MessageCreator() {
if (has_tagged_string_ptr_()) {
delete get_string_ptr_();
}
}
// Delete copy operations - MessageCreator should only be moved
MessageCreator(const MessageCreator &other) = delete;
MessageCreator &operator=(const MessageCreator &other) = delete;
// Copy constructor
MessageCreator(const MessageCreator &other) {
if (other.has_tagged_string_ptr_()) {
auto *str = new std::string(*other.get_string_ptr_());
data_.tagged = reinterpret_cast<uintptr_t>(str) | 1;
} else {
data_ = other.data_;
}
}
// Move constructor
MessageCreator(MessageCreator &&other) noexcept : data_(other.data_) { other.data_.function_ptr = nullptr; }
MessageCreator(MessageCreator &&other) noexcept : data_(other.data_) { other.data_.ptr = nullptr; }
// Move assignment
MessageCreator &operator=(MessageCreator &&other) noexcept {
// Assignment operators (needed for batch deduplication)
MessageCreator &operator=(const MessageCreator &other) {
if (this != &other) {
// IMPORTANT: Caller must ensure cleanup() was called if this contains a string!
// In our usage, this happens in add_item() deduplication and vector::erase()
data_ = other.data_;
other.data_.function_ptr = nullptr;
// Clean up current string data if needed
if (has_tagged_string_ptr_()) {
delete get_string_ptr_();
}
// Copy new data
if (other.has_tagged_string_ptr_()) {
auto *str = new std::string(*other.get_string_ptr_());
data_.tagged = reinterpret_cast<uintptr_t>(str) | 1;
} else {
data_ = other.data_;
}
}
return *this;
}
// Call operator - uses message_type to determine union type
MessageCreator &operator=(MessageCreator &&other) noexcept {
if (this != &other) {
// Clean up current string data if needed
if (has_tagged_string_ptr_()) {
delete get_string_ptr_();
}
// Move data
data_ = other.data_;
// Reset other to safe state
other.data_.ptr = nullptr;
}
return *this;
}
// Call operator - now accepts message_type as parameter
uint16_t operator()(EntityBase *entity, APIConnection *conn, uint32_t remaining_size, bool is_single,
uint16_t message_type) const;
// Manual cleanup method - must be called before destruction for string types
void cleanup(uint16_t message_type) {
#ifdef USE_EVENT
if (message_type == EventResponse::MESSAGE_TYPE && data_.string_ptr != nullptr) {
delete data_.string_ptr;
data_.string_ptr = nullptr;
}
#endif
private:
// Check if this contains a string pointer
bool has_tagged_string_ptr_() const { return (data_.tagged & 1) != 0; }
// Get the actual string pointer (clears the tag bit)
std::string *get_string_ptr_() const {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
return reinterpret_cast<std::string *>(data_.tagged & ~uintptr_t(1));
}
private:
union Data {
MessageCreatorPtr function_ptr;
std::string *string_ptr;
} data_; // 4 bytes on 32-bit, 8 bytes on 64-bit - same as before
union {
MessageCreatorPtr ptr;
uintptr_t tagged;
} data_; // 4 bytes on 32-bit
};
// Generic batching mechanism for both state updates and entity info
@@ -514,85 +589,24 @@ class APIConnection : public APIServerConnection {
std::vector<BatchItem> items;
uint32_t batch_start_time{0};
bool batch_scheduled{false};
private:
// Helper to cleanup items from the beginning
void cleanup_items_(size_t count) {
for (size_t i = 0; i < count; i++) {
items[i].creator.cleanup(items[i].message_type);
}
}
public:
DeferredBatch() {
// Pre-allocate capacity for typical batch sizes to avoid reallocation
items.reserve(8);
}
~DeferredBatch() {
// Ensure cleanup of any remaining items
clear();
}
// Add item to the batch
void add_item(EntityBase *entity, MessageCreator creator, uint16_t message_type);
// Add item to the front of the batch (for high priority messages like ping)
void add_item_front(EntityBase *entity, MessageCreator creator, uint16_t message_type);
// Clear all items with proper cleanup
void clear() {
cleanup_items_(items.size());
items.clear();
batch_scheduled = false;
batch_start_time = 0;
}
// Remove processed items from the front with proper cleanup
void remove_front(size_t count) {
cleanup_items_(count);
items.erase(items.begin(), items.begin() + count);
}
bool empty() const { return items.empty(); }
size_t size() const { return items.size(); }
const BatchItem &operator[](size_t index) const { return items[index]; }
};
// DeferredBatch here (16 bytes, 4-byte aligned)
DeferredBatch deferred_batch_;
// ConnectionState enum for type safety
enum class ConnectionState : uint8_t {
WAITING_FOR_HELLO = 0,
CONNECTED = 1,
AUTHENTICATED = 2,
};
// Group 5: Pack all small members together to minimize padding
// This group starts at a 4-byte boundary after DeferredBatch
struct APIFlags {
// Connection state only needs 2 bits (3 states)
uint8_t connection_state : 2;
// Log subscription needs 3 bits (log levels 0-7)
uint8_t log_subscription : 3;
// Boolean flags (1 bit each)
uint8_t remove : 1;
uint8_t state_subscription : 1;
uint8_t sent_ping : 1;
uint8_t service_call_subscription : 1;
uint8_t next_close : 1;
uint8_t batch_scheduled : 1;
uint8_t batch_first_message : 1; // For batch buffer allocation
#ifdef HAS_PROTO_MESSAGE_DUMP
uint8_t log_only_mode : 1;
#endif
} flags_{}; // 2 bytes total
// 2-byte types immediately after flags_ (no padding between them)
uint16_t client_api_version_major_{0};
uint16_t client_api_version_minor_{0};
// Total: 2 (flags) + 2 + 2 = 6 bytes, then 2 bytes padding to next 4-byte boundary
uint32_t get_batch_delay_ms_() const;
// Message will use 8 more bytes than the minimum size, and typical
// MTU is 1500. Sometimes users will see as low as 1460 MTU.
@@ -610,9 +624,8 @@ class APIConnection : public APIServerConnection {
bool schedule_batch_();
void process_batch_();
#ifdef HAS_PROTO_MESSAGE_DUMP
void log_batch_item_(const DeferredBatch::BatchItem &item);
#endif
// State for batch buffer allocation
bool batch_first_message_{false};
// Helper function to schedule a deferred message with known message type
bool schedule_message_(EntityBase *entity, MessageCreator creator, uint16_t message_type) {
@@ -624,12 +637,6 @@ class APIConnection : public APIServerConnection {
bool schedule_message_(EntityBase *entity, MessageCreatorPtr function_ptr, uint16_t message_type) {
return schedule_message_(entity, MessageCreator(function_ptr), message_type);
}
// Helper function to schedule a high priority message at the front of the batch
bool schedule_message_front_(EntityBase *entity, MessageCreatorPtr function_ptr, uint16_t message_type) {
this->deferred_batch_.add_item_front(entity, MessageCreator(function_ptr), message_type);
return this->schedule_batch_();
}
};
} // namespace api

View File

@@ -3493,7 +3493,7 @@ bool SubscribeLogsResponse::decode_length(uint32_t field_id, ProtoLengthDelimite
}
void SubscribeLogsResponse::encode(ProtoWriteBuffer buffer) const {
buffer.encode_enum<enums::LogLevel>(1, this->level);
buffer.encode_bytes(3, reinterpret_cast<const uint8_t *>(this->message.data()), this->message.size());
buffer.encode_string(3, this->message);
buffer.encode_bool(4, this->send_failed);
}
void SubscribeLogsResponse::calculate_size(uint32_t &total_size) const {
@@ -3529,9 +3529,7 @@ bool NoiseEncryptionSetKeyRequest::decode_length(uint32_t field_id, ProtoLengthD
return false;
}
}
void NoiseEncryptionSetKeyRequest::encode(ProtoWriteBuffer buffer) const {
buffer.encode_bytes(1, reinterpret_cast<const uint8_t *>(this->key.data()), this->key.size());
}
void NoiseEncryptionSetKeyRequest::encode(ProtoWriteBuffer buffer) const { buffer.encode_string(1, this->key); }
void NoiseEncryptionSetKeyRequest::calculate_size(uint32_t &total_size) const {
ProtoSize::add_string_field(total_size, 1, this->key, false);
}
@@ -4268,7 +4266,7 @@ bool CameraImageResponse::decode_32bit(uint32_t field_id, Proto32Bit value) {
}
void CameraImageResponse::encode(ProtoWriteBuffer buffer) const {
buffer.encode_fixed32(1, this->key);
buffer.encode_bytes(2, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(2, this->data);
buffer.encode_bool(3, this->done);
}
void CameraImageResponse::calculate_size(uint32_t &total_size) const {
@@ -6786,7 +6784,7 @@ void BluetoothServiceData::encode(ProtoWriteBuffer buffer) const {
for (auto &it : this->legacy_data) {
buffer.encode_uint32(2, it, true);
}
buffer.encode_bytes(3, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(3, this->data);
}
void BluetoothServiceData::calculate_size(uint32_t &total_size) const {
ProtoSize::add_string_field(total_size, 1, this->uuid, false);
@@ -6860,7 +6858,7 @@ bool BluetoothLEAdvertisementResponse::decode_length(uint32_t field_id, ProtoLen
}
void BluetoothLEAdvertisementResponse::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_bytes(2, reinterpret_cast<const uint8_t *>(this->name.data()), this->name.size());
buffer.encode_string(2, this->name);
buffer.encode_sint32(3, this->rssi);
for (auto &it : this->service_uuids) {
buffer.encode_string(4, it, true);
@@ -6961,7 +6959,7 @@ void BluetoothLERawAdvertisement::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_sint32(2, this->rssi);
buffer.encode_uint32(3, this->address_type);
buffer.encode_bytes(4, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(4, this->data);
}
void BluetoothLERawAdvertisement::calculate_size(uint32_t &total_size) const {
ProtoSize::add_uint64_field(total_size, 1, this->address, false);
@@ -7494,7 +7492,7 @@ bool BluetoothGATTReadResponse::decode_length(uint32_t field_id, ProtoLengthDeli
void BluetoothGATTReadResponse::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_uint32(2, this->handle);
buffer.encode_bytes(3, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(3, this->data);
}
void BluetoothGATTReadResponse::calculate_size(uint32_t &total_size) const {
ProtoSize::add_uint64_field(total_size, 1, this->address, false);
@@ -7553,7 +7551,7 @@ void BluetoothGATTWriteRequest::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_uint32(2, this->handle);
buffer.encode_bool(3, this->response);
buffer.encode_bytes(4, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(4, this->data);
}
void BluetoothGATTWriteRequest::calculate_size(uint32_t &total_size) const {
ProtoSize::add_uint64_field(total_size, 1, this->address, false);
@@ -7650,7 +7648,7 @@ bool BluetoothGATTWriteDescriptorRequest::decode_length(uint32_t field_id, Proto
void BluetoothGATTWriteDescriptorRequest::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_uint32(2, this->handle);
buffer.encode_bytes(3, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(3, this->data);
}
void BluetoothGATTWriteDescriptorRequest::calculate_size(uint32_t &total_size) const {
ProtoSize::add_uint64_field(total_size, 1, this->address, false);
@@ -7752,7 +7750,7 @@ bool BluetoothGATTNotifyDataResponse::decode_length(uint32_t field_id, ProtoLeng
void BluetoothGATTNotifyDataResponse::encode(ProtoWriteBuffer buffer) const {
buffer.encode_uint64(1, this->address);
buffer.encode_uint32(2, this->handle);
buffer.encode_bytes(3, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(3, this->data);
}
void BluetoothGATTNotifyDataResponse::calculate_size(uint32_t &total_size) const {
ProtoSize::add_uint64_field(total_size, 1, this->address, false);
@@ -8482,7 +8480,7 @@ bool VoiceAssistantAudio::decode_length(uint32_t field_id, ProtoLengthDelimited
}
}
void VoiceAssistantAudio::encode(ProtoWriteBuffer buffer) const {
buffer.encode_bytes(1, reinterpret_cast<const uint8_t *>(this->data.data()), this->data.size());
buffer.encode_string(1, this->data);
buffer.encode_bool(2, this->end);
}
void VoiceAssistantAudio::calculate_size(uint32_t &total_size) const {

View File

@@ -14,7 +14,7 @@ void APIServerConnectionBase::log_send_message_(const char *name, const std::str
}
#endif
void APIServerConnectionBase::read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) {
bool APIServerConnectionBase::read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) {
switch (msg_type) {
case 1: {
HelloRequest msg;
@@ -106,50 +106,50 @@ void APIServerConnectionBase::read_message(uint32_t msg_size, uint32_t msg_type,
this->on_subscribe_logs_request(msg);
break;
}
#ifdef USE_COVER
case 30: {
#ifdef USE_COVER
CoverCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_cover_command_request: %s", msg.dump().c_str());
#endif
this->on_cover_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_FAN
case 31: {
#ifdef USE_FAN
FanCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_fan_command_request: %s", msg.dump().c_str());
#endif
this->on_fan_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_LIGHT
case 32: {
#ifdef USE_LIGHT
LightCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_light_command_request: %s", msg.dump().c_str());
#endif
this->on_light_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_SWITCH
case 33: {
#ifdef USE_SWITCH
SwitchCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_switch_command_request: %s", msg.dump().c_str());
#endif
this->on_switch_command_request(msg);
#endif
break;
}
#endif
case 34: {
SubscribeHomeassistantServicesRequest msg;
msg.decode(msg_data, msg_size);
@@ -204,394 +204,395 @@ void APIServerConnectionBase::read_message(uint32_t msg_size, uint32_t msg_type,
this->on_execute_service_request(msg);
break;
}
#ifdef USE_ESP32_CAMERA
case 45: {
#ifdef USE_ESP32_CAMERA
CameraImageRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_camera_image_request: %s", msg.dump().c_str());
#endif
this->on_camera_image_request(msg);
#endif
break;
}
#endif
#ifdef USE_CLIMATE
case 48: {
#ifdef USE_CLIMATE
ClimateCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_climate_command_request: %s", msg.dump().c_str());
#endif
this->on_climate_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_NUMBER
case 51: {
#ifdef USE_NUMBER
NumberCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_number_command_request: %s", msg.dump().c_str());
#endif
this->on_number_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_SELECT
case 54: {
#ifdef USE_SELECT
SelectCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_select_command_request: %s", msg.dump().c_str());
#endif
this->on_select_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_SIREN
case 57: {
#ifdef USE_SIREN
SirenCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_siren_command_request: %s", msg.dump().c_str());
#endif
this->on_siren_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_LOCK
case 60: {
#ifdef USE_LOCK
LockCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_lock_command_request: %s", msg.dump().c_str());
#endif
this->on_lock_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_BUTTON
case 62: {
#ifdef USE_BUTTON
ButtonCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_button_command_request: %s", msg.dump().c_str());
#endif
this->on_button_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_MEDIA_PLAYER
case 65: {
#ifdef USE_MEDIA_PLAYER
MediaPlayerCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_media_player_command_request: %s", msg.dump().c_str());
#endif
this->on_media_player_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 66: {
#ifdef USE_BLUETOOTH_PROXY
SubscribeBluetoothLEAdvertisementsRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_subscribe_bluetooth_le_advertisements_request: %s", msg.dump().c_str());
#endif
this->on_subscribe_bluetooth_le_advertisements_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 68: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothDeviceRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_device_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_device_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 70: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTGetServicesRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_get_services_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_get_services_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 73: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTReadRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_read_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_read_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 75: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTWriteRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_write_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_write_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 76: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTReadDescriptorRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_read_descriptor_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_read_descriptor_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 77: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTWriteDescriptorRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_write_descriptor_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_write_descriptor_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 78: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothGATTNotifyRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_gatt_notify_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_gatt_notify_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 80: {
#ifdef USE_BLUETOOTH_PROXY
SubscribeBluetoothConnectionsFreeRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_subscribe_bluetooth_connections_free_request: %s", msg.dump().c_str());
#endif
this->on_subscribe_bluetooth_connections_free_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 87: {
#ifdef USE_BLUETOOTH_PROXY
UnsubscribeBluetoothLEAdvertisementsRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_unsubscribe_bluetooth_le_advertisements_request: %s", msg.dump().c_str());
#endif
this->on_unsubscribe_bluetooth_le_advertisements_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 89: {
#ifdef USE_VOICE_ASSISTANT
SubscribeVoiceAssistantRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_subscribe_voice_assistant_request: %s", msg.dump().c_str());
#endif
this->on_subscribe_voice_assistant_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 91: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantResponse msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_response: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_response(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 92: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantEventResponse msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_event_response: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_event_response(msg);
#endif
break;
}
#endif
#ifdef USE_ALARM_CONTROL_PANEL
case 96: {
#ifdef USE_ALARM_CONTROL_PANEL
AlarmControlPanelCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_alarm_control_panel_command_request: %s", msg.dump().c_str());
#endif
this->on_alarm_control_panel_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_TEXT
case 99: {
#ifdef USE_TEXT
TextCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_text_command_request: %s", msg.dump().c_str());
#endif
this->on_text_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_DATETIME_DATE
case 102: {
#ifdef USE_DATETIME_DATE
DateCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_date_command_request: %s", msg.dump().c_str());
#endif
this->on_date_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_DATETIME_TIME
case 105: {
#ifdef USE_DATETIME_TIME
TimeCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_time_command_request: %s", msg.dump().c_str());
#endif
this->on_time_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 106: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantAudio msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_audio: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_audio(msg);
#endif
break;
}
#endif
#ifdef USE_VALVE
case 111: {
#ifdef USE_VALVE
ValveCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_valve_command_request: %s", msg.dump().c_str());
#endif
this->on_valve_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_DATETIME_DATETIME
case 114: {
#ifdef USE_DATETIME_DATETIME
DateTimeCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_date_time_command_request: %s", msg.dump().c_str());
#endif
this->on_date_time_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 115: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantTimerEventResponse msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_timer_event_response: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_timer_event_response(msg);
#endif
break;
}
#endif
#ifdef USE_UPDATE
case 118: {
#ifdef USE_UPDATE
UpdateCommandRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_update_command_request: %s", msg.dump().c_str());
#endif
this->on_update_command_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 119: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantAnnounceRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_announce_request: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_announce_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 121: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantConfigurationRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_configuration_request: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_configuration_request(msg);
#endif
break;
}
#endif
#ifdef USE_VOICE_ASSISTANT
case 123: {
#ifdef USE_VOICE_ASSISTANT
VoiceAssistantSetConfiguration msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_voice_assistant_set_configuration: %s", msg.dump().c_str());
#endif
this->on_voice_assistant_set_configuration(msg);
#endif
break;
}
#endif
#ifdef USE_API_NOISE
case 124: {
#ifdef USE_API_NOISE
NoiseEncryptionSetKeyRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_noise_encryption_set_key_request: %s", msg.dump().c_str());
#endif
this->on_noise_encryption_set_key_request(msg);
#endif
break;
}
#endif
#ifdef USE_BLUETOOTH_PROXY
case 127: {
#ifdef USE_BLUETOOTH_PROXY
BluetoothScannerSetModeRequest msg;
msg.decode(msg_data, msg_size);
#ifdef HAS_PROTO_MESSAGE_DUMP
ESP_LOGVV(TAG, "on_bluetooth_scanner_set_mode_request: %s", msg.dump().c_str());
#endif
this->on_bluetooth_scanner_set_mode_request(msg);
#endif
break;
}
#endif
default:
break;
return false;
}
return true;
}
void APIServerConnection::on_hello_request(const HelloRequest &msg) {

View File

@@ -199,7 +199,7 @@ class APIServerConnectionBase : public ProtoService {
virtual void on_update_command_request(const UpdateCommandRequest &value){};
#endif
protected:
void read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) override;
bool read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) override;
};
class APIServerConnection : public APIServerConnectionBase {

View File

@@ -316,13 +316,15 @@ class ProtoSize {
/**
* @brief Calculates and adds the size of a nested message field to the total message size
*
* This version takes a ProtoMessage object, calculates its size internally,
* This templated version directly takes a message object, calculates its size internally,
* and updates the total_size reference. This eliminates the need for a temporary variable
* at the call site.
*
* @tparam MessageType The type of the nested message (inferred from parameter)
* @param message The nested message object
*/
static inline void add_message_object(uint32_t &total_size, uint32_t field_id_size, const ProtoMessage &message,
template<typename MessageType>
static inline void add_message_object(uint32_t &total_size, uint32_t field_id_size, const MessageType &message,
bool force = false) {
uint32_t nested_size = 0;
message.calculate_size(nested_size);

View File

@@ -104,7 +104,7 @@ void APIServer::setup() {
return;
}
for (auto &c : this->clients_) {
if (!c->flags_.remove)
if (!c->remove_)
c->try_send_log_message(level, tag, message);
}
});
@@ -116,7 +116,7 @@ void APIServer::setup() {
esp32_camera::global_esp32_camera->add_image_callback(
[this](const std::shared_ptr<esp32_camera::CameraImage> &image) {
for (auto &c : this->clients_) {
if (!c->flags_.remove)
if (!c->remove_)
c->set_camera_state(image);
}
});
@@ -176,7 +176,7 @@ void APIServer::loop() {
while (client_index < this->clients_.size()) {
auto &client = this->clients_[client_index];
if (!client->flags_.remove) {
if (!client->remove_) {
// Common case: process active client
client->loop();
client_index++;
@@ -184,9 +184,7 @@ void APIServer::loop() {
}
// Rare case: handle disconnection
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
this->client_disconnected_trigger_->trigger(client->client_info_, client->client_peername_);
#endif
ESP_LOGV(TAG, "Remove connection %s", client->client_info_.c_str());
// Swap with the last element and pop (avoids expensive vector shifts)
@@ -433,7 +431,7 @@ void APIServer::set_port(uint16_t port) { this->port_ = port; }
void APIServer::set_password(const std::string &password) { this->password_ = password; }
void APIServer::set_batch_delay(uint16_t batch_delay) { this->batch_delay_ = batch_delay; }
void APIServer::set_batch_delay(uint32_t batch_delay) { this->batch_delay_ = batch_delay; }
void APIServer::send_homeassistant_service_call(const HomeassistantServiceResponse &call) {
for (auto &client : this->clients_) {
@@ -504,7 +502,7 @@ bool APIServer::save_noise_psk(psk_t psk, bool make_active) {
#ifdef USE_HOMEASSISTANT_TIME
void APIServer::request_time() {
for (auto &client : this->clients_) {
if (!client->flags_.remove && client->is_authenticated())
if (!client->remove_ && client->is_authenticated())
client->send_time_request();
}
}
@@ -528,8 +526,8 @@ void APIServer::on_shutdown() {
for (auto &c : this->clients_) {
if (!c->send_message(DisconnectRequest())) {
// If we can't send the disconnect request directly (tx_buffer full),
// schedule it at the front of the batch so it will be sent with priority
c->schedule_message_front_(nullptr, &APIConnection::try_send_disconnect_request, DisconnectRequest::MESSAGE_TYPE);
// schedule it in the batch so it will be sent with the 5ms timer
c->schedule_message_(nullptr, &APIConnection::try_send_disconnect_request, DisconnectRequest::MESSAGE_TYPE);
}
}
}

View File

@@ -40,8 +40,8 @@ class APIServer : public Component, public Controller {
void set_port(uint16_t port);
void set_password(const std::string &password);
void set_reboot_timeout(uint32_t reboot_timeout);
void set_batch_delay(uint16_t batch_delay);
uint16_t get_batch_delay() const { return batch_delay_; }
void set_batch_delay(uint32_t batch_delay);
uint32_t get_batch_delay() const { return batch_delay_; }
// Get reference to shared buffer for API connections
std::vector<uint8_t> &get_shared_buffer_ref() { return shared_write_buffer_; }
@@ -105,18 +105,7 @@ class APIServer : public Component, public Controller {
void on_media_player_update(media_player::MediaPlayer *obj) override;
#endif
void send_homeassistant_service_call(const HomeassistantServiceResponse &call);
void register_user_service(UserServiceDescriptor *descriptor) {
#ifdef USE_API_YAML_SERVICES
// Vector is pre-allocated when services are defined in YAML
this->user_services_.push_back(descriptor);
#else
// Lazy allocate vector on first use for CustomAPIDevice
if (!this->user_services_) {
this->user_services_ = std::make_unique<std::vector<UserServiceDescriptor *>>();
}
this->user_services_->push_back(descriptor);
#endif
}
void register_user_service(UserServiceDescriptor *descriptor) { this->user_services_.push_back(descriptor); }
#ifdef USE_HOMEASSISTANT_TIME
void request_time();
#endif
@@ -145,58 +134,35 @@ class APIServer : public Component, public Controller {
void get_home_assistant_state(std::string entity_id, optional<std::string> attribute,
std::function<void(std::string)> f);
const std::vector<HomeAssistantStateSubscription> &get_state_subs() const;
const std::vector<UserServiceDescriptor *> &get_user_services() const {
#ifdef USE_API_YAML_SERVICES
return this->user_services_;
#else
static const std::vector<UserServiceDescriptor *> EMPTY;
return this->user_services_ ? *this->user_services_ : EMPTY;
#endif
}
const std::vector<UserServiceDescriptor *> &get_user_services() const { return this->user_services_; }
#ifdef USE_API_CLIENT_CONNECTED_TRIGGER
Trigger<std::string, std::string> *get_client_connected_trigger() const { return this->client_connected_trigger_; }
#endif
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
Trigger<std::string, std::string> *get_client_disconnected_trigger() const {
return this->client_disconnected_trigger_;
}
#endif
protected:
void schedule_reboot_timeout_();
// Pointers and pointer-like types first (4 bytes each)
std::unique_ptr<socket::Socket> socket_ = nullptr;
#ifdef USE_API_CLIENT_CONNECTED_TRIGGER
Trigger<std::string, std::string> *client_connected_trigger_ = new Trigger<std::string, std::string>();
#endif
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
Trigger<std::string, std::string> *client_disconnected_trigger_ = new Trigger<std::string, std::string>();
#endif
// 4-byte aligned types
uint32_t reboot_timeout_{300000};
uint32_t batch_delay_{100};
// Vectors and strings (12 bytes each on 32-bit)
std::vector<std::unique_ptr<APIConnection>> clients_;
std::string password_;
std::vector<uint8_t> shared_write_buffer_; // Shared proto write buffer for all connections
std::vector<HomeAssistantStateSubscription> state_subs_;
#ifdef USE_API_YAML_SERVICES
// When services are defined in YAML, we know at compile time that services will be registered
std::vector<UserServiceDescriptor *> user_services_;
#else
// Services can still be registered at runtime by CustomAPIDevice components even when not
// defined in YAML. Using unique_ptr allows lazy allocation, saving 12 bytes in the common
// case where no services (YAML or custom) are used.
std::unique_ptr<std::vector<UserServiceDescriptor *>> user_services_;
#endif
// Group smaller types together
uint16_t port_{6053};
uint16_t batch_delay_{100};
bool shutting_down_ = false;
// 5 bytes used, 3 bytes padding
// 3 bytes used, 1 byte padding
#ifdef USE_API_NOISE
std::shared_ptr<APINoiseContext> noise_ctx_ = std::make_shared<APINoiseContext>();

View File

@@ -4,15 +4,9 @@ import asyncio
from datetime import datetime
import logging
from typing import TYPE_CHECKING, Any
import warnings
# Suppress protobuf version warnings
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=UserWarning, message=".*Protobuf gencode version.*"
)
from aioesphomeapi import APIClient, parse_log_message
from aioesphomeapi.log_runner import async_run
from aioesphomeapi import APIClient, parse_log_message
from aioesphomeapi.log_runner import async_run
from esphome.const import CONF_KEY, CONF_PASSWORD, CONF_PORT, __version__
from esphome.core import CORE
@@ -35,8 +29,8 @@ async def async_run_logs(config: dict[str, Any], address: str) -> None:
port: int = int(conf[CONF_PORT])
password: str = conf[CONF_PASSWORD]
noise_psk: str | None = None
if (encryption := conf.get(CONF_ENCRYPTION)) and (key := encryption.get(CONF_KEY)):
noise_psk = key
if CONF_ENCRYPTION in conf:
noise_psk = conf[CONF_ENCRYPTION][CONF_KEY]
_LOGGER.info("Starting log output from %s using esphome API", address)
cli = APIClient(
address,

View File

@@ -1,7 +1,6 @@
#include "list_entities.h"
#ifdef USE_API
#include "api_connection.h"
#include "api_pb2.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/util.h"
@@ -9,85 +8,155 @@
namespace esphome {
namespace api {
// Generate entity handler implementations using macros
#ifdef USE_BINARY_SENSOR
LIST_ENTITIES_HANDLER(binary_sensor, binary_sensor::BinarySensor, ListEntitiesBinarySensorResponse)
bool ListEntitiesIterator::on_binary_sensor(binary_sensor::BinarySensor *binary_sensor) {
this->client_->send_binary_sensor_info(binary_sensor);
return true;
}
#endif
#ifdef USE_COVER
LIST_ENTITIES_HANDLER(cover, cover::Cover, ListEntitiesCoverResponse)
bool ListEntitiesIterator::on_cover(cover::Cover *cover) {
this->client_->send_cover_info(cover);
return true;
}
#endif
#ifdef USE_FAN
LIST_ENTITIES_HANDLER(fan, fan::Fan, ListEntitiesFanResponse)
bool ListEntitiesIterator::on_fan(fan::Fan *fan) {
this->client_->send_fan_info(fan);
return true;
}
#endif
#ifdef USE_LIGHT
LIST_ENTITIES_HANDLER(light, light::LightState, ListEntitiesLightResponse)
bool ListEntitiesIterator::on_light(light::LightState *light) {
this->client_->send_light_info(light);
return true;
}
#endif
#ifdef USE_SENSOR
LIST_ENTITIES_HANDLER(sensor, sensor::Sensor, ListEntitiesSensorResponse)
bool ListEntitiesIterator::on_sensor(sensor::Sensor *sensor) {
this->client_->send_sensor_info(sensor);
return true;
}
#endif
#ifdef USE_SWITCH
LIST_ENTITIES_HANDLER(switch, switch_::Switch, ListEntitiesSwitchResponse)
bool ListEntitiesIterator::on_switch(switch_::Switch *a_switch) {
this->client_->send_switch_info(a_switch);
return true;
}
#endif
#ifdef USE_BUTTON
LIST_ENTITIES_HANDLER(button, button::Button, ListEntitiesButtonResponse)
bool ListEntitiesIterator::on_button(button::Button *button) {
this->client_->send_button_info(button);
return true;
}
#endif
#ifdef USE_TEXT_SENSOR
LIST_ENTITIES_HANDLER(text_sensor, text_sensor::TextSensor, ListEntitiesTextSensorResponse)
bool ListEntitiesIterator::on_text_sensor(text_sensor::TextSensor *text_sensor) {
this->client_->send_text_sensor_info(text_sensor);
return true;
}
#endif
#ifdef USE_LOCK
LIST_ENTITIES_HANDLER(lock, lock::Lock, ListEntitiesLockResponse)
bool ListEntitiesIterator::on_lock(lock::Lock *a_lock) {
this->client_->send_lock_info(a_lock);
return true;
}
#endif
#ifdef USE_VALVE
LIST_ENTITIES_HANDLER(valve, valve::Valve, ListEntitiesValveResponse)
#endif
#ifdef USE_ESP32_CAMERA
LIST_ENTITIES_HANDLER(camera, esp32_camera::ESP32Camera, ListEntitiesCameraResponse)
#endif
#ifdef USE_CLIMATE
LIST_ENTITIES_HANDLER(climate, climate::Climate, ListEntitiesClimateResponse)
#endif
#ifdef USE_NUMBER
LIST_ENTITIES_HANDLER(number, number::Number, ListEntitiesNumberResponse)
#endif
#ifdef USE_DATETIME_DATE
LIST_ENTITIES_HANDLER(date, datetime::DateEntity, ListEntitiesDateResponse)
#endif
#ifdef USE_DATETIME_TIME
LIST_ENTITIES_HANDLER(time, datetime::TimeEntity, ListEntitiesTimeResponse)
#endif
#ifdef USE_DATETIME_DATETIME
LIST_ENTITIES_HANDLER(datetime, datetime::DateTimeEntity, ListEntitiesDateTimeResponse)
#endif
#ifdef USE_TEXT
LIST_ENTITIES_HANDLER(text, text::Text, ListEntitiesTextResponse)
#endif
#ifdef USE_SELECT
LIST_ENTITIES_HANDLER(select, select::Select, ListEntitiesSelectResponse)
#endif
#ifdef USE_MEDIA_PLAYER
LIST_ENTITIES_HANDLER(media_player, media_player::MediaPlayer, ListEntitiesMediaPlayerResponse)
#endif
#ifdef USE_ALARM_CONTROL_PANEL
LIST_ENTITIES_HANDLER(alarm_control_panel, alarm_control_panel::AlarmControlPanel,
ListEntitiesAlarmControlPanelResponse)
#endif
#ifdef USE_EVENT
LIST_ENTITIES_HANDLER(event, event::Event, ListEntitiesEventResponse)
#endif
#ifdef USE_UPDATE
LIST_ENTITIES_HANDLER(update, update::UpdateEntity, ListEntitiesUpdateResponse)
bool ListEntitiesIterator::on_valve(valve::Valve *valve) {
this->client_->send_valve_info(valve);
return true;
}
#endif
// Special cases that don't follow the pattern
bool ListEntitiesIterator::on_end() { return this->client_->send_list_info_done(); }
ListEntitiesIterator::ListEntitiesIterator(APIConnection *client) : client_(client) {}
bool ListEntitiesIterator::on_service(UserServiceDescriptor *service) {
auto resp = service->encode_list_service_response();
return this->client_->send_message(resp);
}
#ifdef USE_ESP32_CAMERA
bool ListEntitiesIterator::on_camera(esp32_camera::ESP32Camera *camera) {
this->client_->send_camera_info(camera);
return true;
}
#endif
#ifdef USE_CLIMATE
bool ListEntitiesIterator::on_climate(climate::Climate *climate) {
this->client_->send_climate_info(climate);
return true;
}
#endif
#ifdef USE_NUMBER
bool ListEntitiesIterator::on_number(number::Number *number) {
this->client_->send_number_info(number);
return true;
}
#endif
#ifdef USE_DATETIME_DATE
bool ListEntitiesIterator::on_date(datetime::DateEntity *date) {
this->client_->send_date_info(date);
return true;
}
#endif
#ifdef USE_DATETIME_TIME
bool ListEntitiesIterator::on_time(datetime::TimeEntity *time) {
this->client_->send_time_info(time);
return true;
}
#endif
#ifdef USE_DATETIME_DATETIME
bool ListEntitiesIterator::on_datetime(datetime::DateTimeEntity *datetime) {
this->client_->send_datetime_info(datetime);
return true;
}
#endif
#ifdef USE_TEXT
bool ListEntitiesIterator::on_text(text::Text *text) {
this->client_->send_text_info(text);
return true;
}
#endif
#ifdef USE_SELECT
bool ListEntitiesIterator::on_select(select::Select *select) {
this->client_->send_select_info(select);
return true;
}
#endif
#ifdef USE_MEDIA_PLAYER
bool ListEntitiesIterator::on_media_player(media_player::MediaPlayer *media_player) {
this->client_->send_media_player_info(media_player);
return true;
}
#endif
#ifdef USE_ALARM_CONTROL_PANEL
bool ListEntitiesIterator::on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel) {
this->client_->send_alarm_control_panel_info(a_alarm_control_panel);
return true;
}
#endif
#ifdef USE_EVENT
bool ListEntitiesIterator::on_event(event::Event *event) {
this->client_->send_event_info(event);
return true;
}
#endif
#ifdef USE_UPDATE
bool ListEntitiesIterator::on_update(update::UpdateEntity *update) {
this->client_->send_update_info(update);
return true;
}
#endif
} // namespace api
} // namespace esphome
#endif

View File

@@ -9,83 +9,75 @@ namespace api {
class APIConnection;
// Macro for generating ListEntitiesIterator handlers
// Calls schedule_message_ with try_send_*_info
#define LIST_ENTITIES_HANDLER(entity_type, EntityClass, ResponseType) \
bool ListEntitiesIterator::on_##entity_type(EntityClass *entity) { /* NOLINT(bugprone-macro-parentheses) */ \
return this->client_->schedule_message_(entity, &APIConnection::try_send_##entity_type##_info, \
ResponseType::MESSAGE_TYPE); \
}
class ListEntitiesIterator : public ComponentIterator {
public:
ListEntitiesIterator(APIConnection *client);
#ifdef USE_BINARY_SENSOR
bool on_binary_sensor(binary_sensor::BinarySensor *entity) override;
bool on_binary_sensor(binary_sensor::BinarySensor *binary_sensor) override;
#endif
#ifdef USE_COVER
bool on_cover(cover::Cover *entity) override;
bool on_cover(cover::Cover *cover) override;
#endif
#ifdef USE_FAN
bool on_fan(fan::Fan *entity) override;
bool on_fan(fan::Fan *fan) override;
#endif
#ifdef USE_LIGHT
bool on_light(light::LightState *entity) override;
bool on_light(light::LightState *light) override;
#endif
#ifdef USE_SENSOR
bool on_sensor(sensor::Sensor *entity) override;
bool on_sensor(sensor::Sensor *sensor) override;
#endif
#ifdef USE_SWITCH
bool on_switch(switch_::Switch *entity) override;
bool on_switch(switch_::Switch *a_switch) override;
#endif
#ifdef USE_BUTTON
bool on_button(button::Button *entity) override;
bool on_button(button::Button *button) override;
#endif
#ifdef USE_TEXT_SENSOR
bool on_text_sensor(text_sensor::TextSensor *entity) override;
bool on_text_sensor(text_sensor::TextSensor *text_sensor) override;
#endif
bool on_service(UserServiceDescriptor *service) override;
#ifdef USE_ESP32_CAMERA
bool on_camera(esp32_camera::ESP32Camera *entity) override;
bool on_camera(esp32_camera::ESP32Camera *camera) override;
#endif
#ifdef USE_CLIMATE
bool on_climate(climate::Climate *entity) override;
bool on_climate(climate::Climate *climate) override;
#endif
#ifdef USE_NUMBER
bool on_number(number::Number *entity) override;
bool on_number(number::Number *number) override;
#endif
#ifdef USE_DATETIME_DATE
bool on_date(datetime::DateEntity *entity) override;
bool on_date(datetime::DateEntity *date) override;
#endif
#ifdef USE_DATETIME_TIME
bool on_time(datetime::TimeEntity *entity) override;
bool on_time(datetime::TimeEntity *time) override;
#endif
#ifdef USE_DATETIME_DATETIME
bool on_datetime(datetime::DateTimeEntity *entity) override;
bool on_datetime(datetime::DateTimeEntity *datetime) override;
#endif
#ifdef USE_TEXT
bool on_text(text::Text *entity) override;
bool on_text(text::Text *text) override;
#endif
#ifdef USE_SELECT
bool on_select(select::Select *entity) override;
bool on_select(select::Select *select) override;
#endif
#ifdef USE_LOCK
bool on_lock(lock::Lock *entity) override;
bool on_lock(lock::Lock *a_lock) override;
#endif
#ifdef USE_VALVE
bool on_valve(valve::Valve *entity) override;
bool on_valve(valve::Valve *valve) override;
#endif
#ifdef USE_MEDIA_PLAYER
bool on_media_player(media_player::MediaPlayer *entity) override;
bool on_media_player(media_player::MediaPlayer *media_player) override;
#endif
#ifdef USE_ALARM_CONTROL_PANEL
bool on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *entity) override;
bool on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel) override;
#endif
#ifdef USE_EVENT
bool on_event(event::Event *entity) override;
bool on_event(event::Event *event) override;
#endif
#ifdef USE_UPDATE
bool on_update(update::UpdateEntity *entity) override;
bool on_update(update::UpdateEntity *update) override;
#endif
bool on_end() override;
bool completed() { return this->state_ == IteratorState::NONE; }

View File

@@ -364,7 +364,7 @@ class ProtoService {
*/
virtual ProtoWriteBuffer create_buffer(uint32_t reserve_size) = 0;
virtual bool send_buffer(ProtoWriteBuffer buffer, uint16_t message_type) = 0;
virtual void read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) = 0;
virtual bool read_message(uint32_t msg_size, uint32_t msg_type, uint8_t *msg_data) = 0;
// Optimized method that pre-allocates buffer based on message size
bool send_message_(const ProtoMessage &msg, uint16_t message_type) {

View File

@@ -6,67 +6,73 @@
namespace esphome {
namespace api {
// Generate entity handler implementations using macros
#ifdef USE_BINARY_SENSOR
INITIAL_STATE_HANDLER(binary_sensor, binary_sensor::BinarySensor)
bool InitialStateIterator::on_binary_sensor(binary_sensor::BinarySensor *binary_sensor) {
return this->client_->send_binary_sensor_state(binary_sensor);
}
#endif
#ifdef USE_COVER
INITIAL_STATE_HANDLER(cover, cover::Cover)
bool InitialStateIterator::on_cover(cover::Cover *cover) { return this->client_->send_cover_state(cover); }
#endif
#ifdef USE_FAN
INITIAL_STATE_HANDLER(fan, fan::Fan)
bool InitialStateIterator::on_fan(fan::Fan *fan) { return this->client_->send_fan_state(fan); }
#endif
#ifdef USE_LIGHT
INITIAL_STATE_HANDLER(light, light::LightState)
bool InitialStateIterator::on_light(light::LightState *light) { return this->client_->send_light_state(light); }
#endif
#ifdef USE_SENSOR
INITIAL_STATE_HANDLER(sensor, sensor::Sensor)
bool InitialStateIterator::on_sensor(sensor::Sensor *sensor) { return this->client_->send_sensor_state(sensor); }
#endif
#ifdef USE_SWITCH
INITIAL_STATE_HANDLER(switch, switch_::Switch)
bool InitialStateIterator::on_switch(switch_::Switch *a_switch) { return this->client_->send_switch_state(a_switch); }
#endif
#ifdef USE_TEXT_SENSOR
INITIAL_STATE_HANDLER(text_sensor, text_sensor::TextSensor)
bool InitialStateIterator::on_text_sensor(text_sensor::TextSensor *text_sensor) {
return this->client_->send_text_sensor_state(text_sensor);
}
#endif
#ifdef USE_CLIMATE
INITIAL_STATE_HANDLER(climate, climate::Climate)
bool InitialStateIterator::on_climate(climate::Climate *climate) { return this->client_->send_climate_state(climate); }
#endif
#ifdef USE_NUMBER
INITIAL_STATE_HANDLER(number, number::Number)
bool InitialStateIterator::on_number(number::Number *number) { return this->client_->send_number_state(number); }
#endif
#ifdef USE_DATETIME_DATE
INITIAL_STATE_HANDLER(date, datetime::DateEntity)
bool InitialStateIterator::on_date(datetime::DateEntity *date) { return this->client_->send_date_state(date); }
#endif
#ifdef USE_DATETIME_TIME
INITIAL_STATE_HANDLER(time, datetime::TimeEntity)
bool InitialStateIterator::on_time(datetime::TimeEntity *time) { return this->client_->send_time_state(time); }
#endif
#ifdef USE_DATETIME_DATETIME
INITIAL_STATE_HANDLER(datetime, datetime::DateTimeEntity)
bool InitialStateIterator::on_datetime(datetime::DateTimeEntity *datetime) {
return this->client_->send_datetime_state(datetime);
}
#endif
#ifdef USE_TEXT
INITIAL_STATE_HANDLER(text, text::Text)
bool InitialStateIterator::on_text(text::Text *text) { return this->client_->send_text_state(text); }
#endif
#ifdef USE_SELECT
INITIAL_STATE_HANDLER(select, select::Select)
bool InitialStateIterator::on_select(select::Select *select) { return this->client_->send_select_state(select); }
#endif
#ifdef USE_LOCK
INITIAL_STATE_HANDLER(lock, lock::Lock)
bool InitialStateIterator::on_lock(lock::Lock *a_lock) { return this->client_->send_lock_state(a_lock); }
#endif
#ifdef USE_VALVE
INITIAL_STATE_HANDLER(valve, valve::Valve)
bool InitialStateIterator::on_valve(valve::Valve *valve) { return this->client_->send_valve_state(valve); }
#endif
#ifdef USE_MEDIA_PLAYER
INITIAL_STATE_HANDLER(media_player, media_player::MediaPlayer)
bool InitialStateIterator::on_media_player(media_player::MediaPlayer *media_player) {
return this->client_->send_media_player_state(media_player);
}
#endif
#ifdef USE_ALARM_CONTROL_PANEL
INITIAL_STATE_HANDLER(alarm_control_panel, alarm_control_panel::AlarmControlPanel)
bool InitialStateIterator::on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel) {
return this->client_->send_alarm_control_panel_state(a_alarm_control_panel);
}
#endif
#ifdef USE_UPDATE
INITIAL_STATE_HANDLER(update, update::UpdateEntity)
bool InitialStateIterator::on_update(update::UpdateEntity *update) { return this->client_->send_update_state(update); }
#endif
// Special cases (button and event) are already defined inline in subscribe_state.h
InitialStateIterator::InitialStateIterator(APIConnection *client) : client_(client) {}
} // namespace api

View File

@@ -10,78 +10,71 @@ namespace api {
class APIConnection;
// Macro for generating InitialStateIterator handlers
// Calls send_*_state
#define INITIAL_STATE_HANDLER(entity_type, EntityClass) \
bool InitialStateIterator::on_##entity_type(EntityClass *entity) { /* NOLINT(bugprone-macro-parentheses) */ \
return this->client_->send_##entity_type##_state(entity); \
}
class InitialStateIterator : public ComponentIterator {
public:
InitialStateIterator(APIConnection *client);
#ifdef USE_BINARY_SENSOR
bool on_binary_sensor(binary_sensor::BinarySensor *entity) override;
bool on_binary_sensor(binary_sensor::BinarySensor *binary_sensor) override;
#endif
#ifdef USE_COVER
bool on_cover(cover::Cover *entity) override;
bool on_cover(cover::Cover *cover) override;
#endif
#ifdef USE_FAN
bool on_fan(fan::Fan *entity) override;
bool on_fan(fan::Fan *fan) override;
#endif
#ifdef USE_LIGHT
bool on_light(light::LightState *entity) override;
bool on_light(light::LightState *light) override;
#endif
#ifdef USE_SENSOR
bool on_sensor(sensor::Sensor *entity) override;
bool on_sensor(sensor::Sensor *sensor) override;
#endif
#ifdef USE_SWITCH
bool on_switch(switch_::Switch *entity) override;
bool on_switch(switch_::Switch *a_switch) override;
#endif
#ifdef USE_BUTTON
bool on_button(button::Button *button) override { return true; };
#endif
#ifdef USE_TEXT_SENSOR
bool on_text_sensor(text_sensor::TextSensor *entity) override;
bool on_text_sensor(text_sensor::TextSensor *text_sensor) override;
#endif
#ifdef USE_CLIMATE
bool on_climate(climate::Climate *entity) override;
bool on_climate(climate::Climate *climate) override;
#endif
#ifdef USE_NUMBER
bool on_number(number::Number *entity) override;
bool on_number(number::Number *number) override;
#endif
#ifdef USE_DATETIME_DATE
bool on_date(datetime::DateEntity *entity) override;
bool on_date(datetime::DateEntity *date) override;
#endif
#ifdef USE_DATETIME_TIME
bool on_time(datetime::TimeEntity *entity) override;
bool on_time(datetime::TimeEntity *time) override;
#endif
#ifdef USE_DATETIME_DATETIME
bool on_datetime(datetime::DateTimeEntity *entity) override;
bool on_datetime(datetime::DateTimeEntity *datetime) override;
#endif
#ifdef USE_TEXT
bool on_text(text::Text *entity) override;
bool on_text(text::Text *text) override;
#endif
#ifdef USE_SELECT
bool on_select(select::Select *entity) override;
bool on_select(select::Select *select) override;
#endif
#ifdef USE_LOCK
bool on_lock(lock::Lock *entity) override;
bool on_lock(lock::Lock *a_lock) override;
#endif
#ifdef USE_VALVE
bool on_valve(valve::Valve *entity) override;
bool on_valve(valve::Valve *valve) override;
#endif
#ifdef USE_MEDIA_PLAYER
bool on_media_player(media_player::MediaPlayer *entity) override;
bool on_media_player(media_player::MediaPlayer *media_player) override;
#endif
#ifdef USE_ALARM_CONTROL_PANEL
bool on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *entity) override;
bool on_alarm_control_panel(alarm_control_panel::AlarmControlPanel *a_alarm_control_panel) override;
#endif
#ifdef USE_EVENT
bool on_event(event::Event *event) override { return true; };
#endif
#ifdef USE_UPDATE
bool on_update(update::UpdateEntity *entity) override;
bool on_update(update::UpdateEntity *update) override;
#endif
bool completed() { return this->state_ == IteratorState::NONE; }

View File

@@ -50,6 +50,7 @@ class AS5600Component : public Component, public i2c::I2CDevice {
void setup() override;
void dump_config() override;
/// HARDWARE_LATE setup priority
float get_setup_priority() const override { return setup_priority::DATA; }
// configuration setters
void set_dir_pin(InternalGPIOPin *pin) { this->dir_pin_ = pin; }

View File

@@ -5,7 +5,6 @@ from esphome.const import (
PLATFORM_BK72XX,
PLATFORM_ESP32,
PLATFORM_ESP8266,
PLATFORM_LN882X,
PLATFORM_RTL87XX,
)
from esphome.core import CORE, coroutine_with_priority
@@ -15,15 +14,7 @@ CODEOWNERS = ["@OttoWinter"]
CONFIG_SCHEMA = cv.All(
cv.Schema({}),
cv.only_with_arduino,
cv.only_on(
[
PLATFORM_ESP32,
PLATFORM_ESP8266,
PLATFORM_BK72XX,
PLATFORM_LN882X,
PLATFORM_RTL87XX,
]
),
cv.only_on([PLATFORM_ESP32, PLATFORM_ESP8266, PLATFORM_BK72XX, PLATFORM_RTL87XX]),
)

View File

@@ -25,6 +25,7 @@ class ATCMiThermometer : public Component, public esp32_ble_tracker::ESPBTDevice
bool parse_device(const esp32_ble_tracker::ESPBTDevice &device) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_temperature(sensor::Sensor *temperature) { temperature_ = temperature; }
void set_humidity(sensor::Sensor *humidity) { humidity_ = humidity; }
void set_battery_level(sensor::Sensor *battery_level) { battery_level_ = battery_level; }

View File

@@ -1,7 +1,6 @@
#include "atm90e32.h"
#include <cinttypes>
#include <cmath>
#include <numbers>
#include "esphome/core/log.h"
namespace esphome {
@@ -849,7 +848,7 @@ uint16_t ATM90E32Component::calculate_voltage_threshold(int line_freq, uint16_t
float nominal_voltage = (line_freq == 60) ? 120.0f : 220.0f;
float target_voltage = nominal_voltage * multiplier;
float peak_01v = target_voltage * 100.0f * std::numbers::sqrt2_v<float>; // convert RMS → peak, scale to 0.01V
float peak_01v = target_voltage * 100.0f * std::sqrt(2.0f); // convert RMS → peak, scale to 0.01V
float divider = (2.0f * ugain) / 32768.0f;
float threshold = peak_01v / divider;

View File

@@ -312,7 +312,7 @@ FileDecoderState AudioDecoder::decode_mp3_() {
if (err) {
switch (err) {
case esp_audio_libs::helix_decoder::ERR_MP3_OUT_OF_MEMORY:
[[fallthrough]];
// Intentional fallthrough
case esp_audio_libs::helix_decoder::ERR_MP3_NULL_POINTER:
return FileDecoderState::FAILED;
break;

View File

@@ -5,7 +5,6 @@
#include "esphome/core/defines.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#if CONFIG_MBEDTLS_CERTIFICATE_BUNDLE
#include "esp_crt_bundle.h"
@@ -17,13 +16,13 @@ namespace audio {
static const uint32_t READ_WRITE_TIMEOUT_MS = 20;
static const uint32_t CONNECTION_TIMEOUT_MS = 5000;
static const uint8_t MAX_FETCHING_HEADER_ATTEMPTS = 6;
// The number of times the http read times out with no data before throwing an error
static const uint32_t ERROR_COUNT_NO_DATA_READ_TIMEOUT = 100;
static const size_t HTTP_STREAM_BUFFER_SIZE = 2048;
static const uint8_t MAX_REDIRECTIONS = 5;
static const char *const TAG = "audio_reader";
static const uint8_t MAX_REDIRECTION = 5;
// Some common HTTP status codes - borrowed from http_request component accessed 20241224
enum HttpStatus {
@@ -95,7 +94,7 @@ esp_err_t AudioReader::start(const std::string &uri, AudioFileType &file_type) {
client_config.url = uri.c_str();
client_config.cert_pem = nullptr;
client_config.disable_auto_redirect = false;
client_config.max_redirection_count = MAX_REDIRECTIONS;
client_config.max_redirection_count = 10;
client_config.event_handler = http_event_handler;
client_config.user_data = this;
client_config.buffer_size = HTTP_STREAM_BUFFER_SIZE;
@@ -117,29 +116,12 @@ esp_err_t AudioReader::start(const std::string &uri, AudioFileType &file_type) {
esp_err_t err = esp_http_client_open(this->client_, 0);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to open URL");
this->cleanup_connection_();
return err;
}
int64_t header_length = esp_http_client_fetch_headers(this->client_);
uint8_t reattempt_count = 0;
while ((header_length < 0) && (reattempt_count < MAX_FETCHING_HEADER_ATTEMPTS)) {
this->cleanup_connection_();
if (header_length != -ESP_ERR_HTTP_EAGAIN) {
// Serious error, no recovery
return ESP_FAIL;
} else {
// Reconnect from a fresh state to avoid a bug where it never reads the headers even if made available
this->client_ = esp_http_client_init(&client_config);
esp_http_client_open(this->client_, 0);
header_length = esp_http_client_fetch_headers(this->client_);
++reattempt_count;
}
}
if (header_length < 0) {
ESP_LOGE(TAG, "Failed to fetch headers");
this->cleanup_connection_();
return ESP_FAIL;
}
@@ -153,7 +135,7 @@ esp_err_t AudioReader::start(const std::string &uri, AudioFileType &file_type) {
ssize_t redirect_count = 0;
while ((esp_http_client_set_redirection(this->client_) == ESP_OK) && (redirect_count < MAX_REDIRECTIONS)) {
while ((esp_http_client_set_redirection(this->client_) == ESP_OK) && (redirect_count < MAX_REDIRECTION)) {
err = esp_http_client_open(this->client_, 0);
if (err != ESP_OK) {
this->cleanup_connection_();
@@ -285,29 +267,27 @@ AudioReaderState AudioReader::http_read_() {
return AudioReaderState::FINISHED;
}
} else if (this->output_transfer_buffer_->free() > 0) {
int received_len = esp_http_client_read(this->client_, (char *) this->output_transfer_buffer_->get_buffer_end(),
this->output_transfer_buffer_->free());
size_t bytes_to_read = this->output_transfer_buffer_->free();
int received_len =
esp_http_client_read(this->client_, (char *) this->output_transfer_buffer_->get_buffer_end(), bytes_to_read);
if (received_len > 0) {
this->output_transfer_buffer_->increase_buffer_length(received_len);
this->last_data_read_ms_ = millis();
return AudioReaderState::READING;
} else if (received_len <= 0) {
} else if (received_len < 0) {
// HTTP read error
if (received_len == -1) {
// A true connection error occured, no chance at recovery
this->cleanup_connection_();
return AudioReaderState::FAILED;
}
this->cleanup_connection_();
return AudioReaderState::FAILED;
} else {
if (bytes_to_read > 0) {
// Read timed out
if ((millis() - this->last_data_read_ms_) > CONNECTION_TIMEOUT_MS) {
this->cleanup_connection_();
return AudioReaderState::FAILED;
}
// Read timed out, manually verify if it has been too long since the last successful read
if ((millis() - this->last_data_read_ms_) > MAX_FETCHING_HEADER_ATTEMPTS * CONNECTION_TIMEOUT_MS) {
ESP_LOGE(TAG, "Timed out");
this->cleanup_connection_();
return AudioReaderState::FAILED;
delay(READ_WRITE_TIMEOUT_MS);
}
delay(READ_WRITE_TIMEOUT_MS);
}
}

View File

@@ -16,6 +16,7 @@ class BParasite : public Component, public esp32_ble_tracker::ESPBTDeviceListene
bool parse_device(const esp32_ble_tracker::ESPBTDevice &device) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_battery_voltage(sensor::Sensor *battery_voltage) { battery_voltage_ = battery_voltage; }
void set_temperature(sensor::Sensor *temperature) { temperature_ = temperature; }

View File

@@ -16,6 +16,7 @@ class BLEBinaryOutput : public output::BinaryOutput, public BLEClientNode, publi
public:
void dump_config() override;
void loop() override {}
float get_setup_priority() const override { return setup_priority::DATA; }
void set_service_uuid16(uint16_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint16(uuid); }
void set_service_uuid32(uint32_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint32(uuid); }
void set_service_uuid128(uint8_t *uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_raw(uuid); }

View File

@@ -18,6 +18,7 @@ class BLEClientRSSISensor : public sensor::Sensor, public PollingComponent, publ
void loop() override;
void update() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) override;

View File

@@ -24,6 +24,7 @@ class BLESensor : public sensor::Sensor, public PollingComponent, public BLEClie
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_service_uuid16(uint16_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint16(uuid); }
void set_service_uuid32(uint32_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint32(uuid); }
void set_service_uuid128(uint8_t *uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_raw(uuid); }

View File

@@ -19,6 +19,7 @@ class BLEClientSwitch : public switch_::Switch, public Component, public BLEClie
void loop() override {}
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void write_state(bool state) override;

View File

@@ -20,6 +20,7 @@ class BLETextSensor : public text_sensor::TextSensor, public PollingComponent, p
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void set_service_uuid16(uint16_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint16(uuid); }
void set_service_uuid32(uint32_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint32(uuid); }
void set_service_uuid128(uint8_t *uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_raw(uuid); }

View File

@@ -105,6 +105,7 @@ class BLEPresenceDevice : public binary_sensor::BinarySensorInitiallyOff,
this->set_found_(false);
}
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void set_found_(bool state) {

View File

@@ -99,6 +99,7 @@ class BLERSSISensor : public sensor::Sensor, public esp32_ble_tracker::ESPBTDevi
return false;
}
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
enum MatchType { MATCH_BY_MAC_ADDRESS, MATCH_BY_IRK, MATCH_BY_SERVICE_UUID, MATCH_BY_IBEACON_UUID };

View File

@@ -29,6 +29,7 @@ class BLEScanner : public text_sensor::TextSensor, public esp32_ble_tracker::ESP
return true;
}
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
};
} // namespace ble_scanner

View File

@@ -61,6 +61,8 @@ enum IIRFilter {
class BMP581Component : public PollingComponent, public i2c::I2CDevice {
public:
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
void setup() override;

View File

@@ -46,6 +46,7 @@ class CAP1188Component : public Component, public i2c::I2CDevice {
void set_reset_pin(GPIOPin *reset_pin) { this->reset_pin_ = reset_pin; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void loop() override;
protected:

View File

@@ -7,7 +7,6 @@ from esphome.const import (
PLATFORM_BK72XX,
PLATFORM_ESP32,
PLATFORM_ESP8266,
PLATFORM_LN882X,
PLATFORM_RTL87XX,
)
from esphome.core import CORE, coroutine_with_priority
@@ -28,15 +27,7 @@ CONFIG_SCHEMA = cv.All(
),
}
).extend(cv.COMPONENT_SCHEMA),
cv.only_on(
[
PLATFORM_ESP32,
PLATFORM_ESP8266,
PLATFORM_BK72XX,
PLATFORM_LN882X,
PLATFORM_RTL87XX,
]
),
cv.only_on([PLATFORM_ESP32, PLATFORM_ESP8266, PLATFORM_BK72XX, PLATFORM_RTL87XX]),
)

View File

@@ -47,9 +47,7 @@ void CaptivePortal::start() {
this->base_->init();
if (!this->initialized_) {
this->base_->add_handler(this);
#ifdef USE_WEBSERVER_OTA
this->base_->add_ota_handler();
#endif
}
#ifdef USE_ARDUINO

View File

@@ -25,6 +25,8 @@ class CCS811Component : public PollingComponent, public i2c::I2CDevice {
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
optional<uint8_t> read_status_() { return this->read_byte(0x00); }
bool status_has_error_() { return this->read_status_().value_or(1) & 1; }

View File

@@ -11,6 +11,7 @@ class CopyBinarySensor : public binary_sensor::BinarySensor, public Component {
void set_source(binary_sensor::BinarySensor *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
binary_sensor::BinarySensor *source_;

View File

@@ -10,6 +10,7 @@ class CopyButton : public button::Button, public Component {
public:
void set_source(button::Button *source) { source_ = source; }
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void press_action() override;

View File

@@ -11,6 +11,7 @@ class CopyCover : public cover::Cover, public Component {
void set_source(cover::Cover *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
cover::CoverTraits get_traits() override;

View File

@@ -11,6 +11,7 @@ class CopyFan : public fan::Fan, public Component {
void set_source(fan::Fan *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
fan::FanTraits get_traits() override;

View File

@@ -11,6 +11,7 @@ class CopyLock : public lock::Lock, public Component {
void set_source(lock::Lock *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void control(const lock::LockCall &call) override;

View File

@@ -11,6 +11,7 @@ class CopyNumber : public number::Number, public Component {
void set_source(number::Number *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void control(float value) override;

View File

@@ -11,6 +11,7 @@ class CopySelect : public select::Select, public Component {
void set_source(select::Select *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void control(const std::string &value) override;

View File

@@ -11,6 +11,7 @@ class CopySensor : public sensor::Sensor, public Component {
void set_source(sensor::Sensor *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
sensor::Sensor *source_;

View File

@@ -11,6 +11,7 @@ class CopySwitch : public switch_::Switch, public Component {
void set_source(switch_::Switch *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void write_state(bool state) override;

View File

@@ -11,6 +11,7 @@ class CopyText : public text::Text, public Component {
void set_source(text::Text *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void control(const std::string &value) override;

View File

@@ -11,6 +11,7 @@ class CopyTextSensor : public text_sensor::TextSensor, public Component {
void set_source(text_sensor::TextSensor *source) { source_ = source; }
void setup() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
text_sensor::TextSensor *source_;

View File

@@ -77,6 +77,7 @@ class CS5460AComponent : public Component,
void setup() override;
void loop() override {}
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
protected:

View File

@@ -1,6 +1,5 @@
#include "display.h"
#include <utility>
#include <numbers>
#include "display_color_utils.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
@@ -425,15 +424,15 @@ void HOT Display::get_regular_polygon_vertex(int vertex_id, int *vertex_x, int *
// hence we rotate the shape by 270° to orient the polygon up.
rotation_degrees += ROTATION_270_DEGREES;
// Convert the rotation to radians, easier to use in trigonometrical calculations
float rotation_radians = rotation_degrees * std::numbers::pi / 180;
float rotation_radians = rotation_degrees * PI / 180;
// A pointy top variation means the first vertex of the polygon is at the top center of the shape, this requires no
// additional rotation of the shape.
// A flat top variation means the first point of the polygon has to be rotated so that the first edge is horizontal,
// this requires to rotate the shape by π/edges radians counter-clockwise so that the first point is located on the
// left side of the first horizontal edge.
rotation_radians -= (variation == VARIATION_FLAT_TOP) ? std::numbers::pi / edges : 0.0;
rotation_radians -= (variation == VARIATION_FLAT_TOP) ? PI / edges : 0.0;
float vertex_angle = ((float) vertex_id) / edges * 2 * std::numbers::pi + rotation_radians;
float vertex_angle = ((float) vertex_id) / edges * 2 * PI + rotation_radians;
*vertex_x = (int) round(cos(vertex_angle) * radius) + center_x;
*vertex_y = (int) round(sin(vertex_angle) * radius) + center_y;
}

View File

@@ -138,6 +138,8 @@ enum DisplayRotation {
DISPLAY_ROTATION_270_DEGREES = 270,
};
#define PI 3.1415926535897932384626433832795
const int EDGES_TRIGON = 3;
const int EDGES_TRIANGLE = 3;
const int EDGES_TETRAGON = 4;

View File

@@ -19,6 +19,7 @@ class DutyTimeSensor : public sensor::Sensor, public PollingComponent {
void update() override;
void loop() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void start();
void stop();

View File

@@ -18,6 +18,7 @@ class ENS160Component : public PollingComponent, public sensor::Sensor {
void setup() override;
void update() override;
void dump_config() override;
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void send_env_data_();

View File

@@ -25,6 +25,7 @@ class ES7210 : public audio_adc::AudioAdc, public Component, public i2c::I2CDevi
*/
public:
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
void set_bits_per_sample(ES7210BitsPerSample bits_per_sample) { this->bits_per_sample_ = bits_per_sample; }

View File

@@ -14,6 +14,7 @@ class ES7243E : public audio_adc::AudioAdc, public Component, public i2c::I2CDev
*/
public:
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
bool set_mic_gain(float mic_gain) override;

View File

@@ -14,6 +14,7 @@ class ES8156 : public audio_dac::AudioDac, public Component, public i2c::I2CDevi
/////////////////////////
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
////////////////////////

View File

@@ -50,6 +50,7 @@ class ES8311 : public audio_dac::AudioDac, public Component, public i2c::I2CDevi
/////////////////////////
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
////////////////////////

View File

@@ -38,6 +38,7 @@ class ES8388 : public audio_dac::AudioDac, public Component, public i2c::I2CDevi
/////////////////////////
void setup() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void dump_config() override;
////////////////////////

View File

@@ -341,7 +341,6 @@ SUPPORTED_PLATFORMIO_ESP_IDF_5X = [
# List based on https://github.com/pioarduino/esp-idf/releases
SUPPORTED_PIOARDUINO_ESP_IDF_5X = [
cv.Version(5, 5, 0),
cv.Version(5, 4, 2),
cv.Version(5, 4, 1),
cv.Version(5, 4, 0),
cv.Version(5, 3, 3),
@@ -411,8 +410,8 @@ def _esp_idf_check_versions(value):
version = cv.Version.parse(cv.version_number(value[CONF_VERSION]))
source = value.get(CONF_SOURCE, None)
if version < cv.Version(5, 0, 0):
raise cv.Invalid("Only ESP-IDF 5.0+ is supported.")
if version < cv.Version(4, 0, 0):
raise cv.Invalid("Only ESP-IDF 4.0+ is supported.")
# flag this for later *before* we set value[CONF_PLATFORM_VERSION] below
has_platform_ver = CONF_PLATFORM_VERSION in value
@@ -422,15 +421,20 @@ def _esp_idf_check_versions(value):
)
if (
is_platformio := _platform_is_platformio(value[CONF_PLATFORM_VERSION])
) and version not in SUPPORTED_PLATFORMIO_ESP_IDF_5X:
(is_platformio := _platform_is_platformio(value[CONF_PLATFORM_VERSION]))
and version.major >= 5
and version not in SUPPORTED_PLATFORMIO_ESP_IDF_5X
):
raise cv.Invalid(
f"ESP-IDF {str(version)} not supported by platformio/espressif32"
)
if (
version in SUPPORTED_PLATFORMIO_ESP_IDF_5X
and version not in SUPPORTED_PIOARDUINO_ESP_IDF_5X
version.major < 5
or (
version in SUPPORTED_PLATFORMIO_ESP_IDF_5X
and version not in SUPPORTED_PIOARDUINO_ESP_IDF_5X
)
) and not has_platform_ver:
raise cv.Invalid(
f"ESP-IDF {value[CONF_VERSION]} may be supported by platformio/espressif32; please specify '{CONF_PLATFORM_VERSION}'"
@@ -606,7 +610,7 @@ ESP_IDF_FRAMEWORK_SCHEMA = cv.All(
CONF_ENABLE_LWIP_DHCP_SERVER, "wifi", default=False
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_MDNS_QUERIES, default=True
CONF_ENABLE_LWIP_MDNS_QUERIES, default=False
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_BRIDGE_INTERFACE, default=False
@@ -700,7 +704,7 @@ FINAL_VALIDATE_SCHEMA = cv.Schema(final_validate)
async def to_code(config):
cg.add_platformio_option("board", config[CONF_BOARD])
cg.add_platformio_option("board_upload.flash_size", config[CONF_FLASH_SIZE])
cg.set_cpp_standard("gnu++20")
cg.set_cpp_standard("gnu++17")
cg.add_build_flag("-DUSE_ESP32")
cg.add_define("ESPHOME_BOARD", config[CONF_BOARD])
cg.add_build_flag(f"-DUSE_ESP32_VARIANT_{config[CONF_VARIANT]}")
@@ -754,9 +758,6 @@ async def to_code(config):
add_idf_sdkconfig_option("CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0", False)
add_idf_sdkconfig_option("CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1", False)
# Disable dynamic log level control to save memory
add_idf_sdkconfig_option("CONFIG_LOG_DYNAMIC_LEVEL_CONTROL", False)
# Set default CPU frequency
add_idf_sdkconfig_option(f"CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ_{freq}", True)
@@ -769,7 +770,7 @@ async def to_code(config):
and not advanced[CONF_ENABLE_LWIP_DHCP_SERVER]
):
add_idf_sdkconfig_option("CONFIG_LWIP_DHCPS", False)
if not advanced.get(CONF_ENABLE_LWIP_MDNS_QUERIES, True):
if not advanced.get(CONF_ENABLE_LWIP_MDNS_QUERIES, False):
add_idf_sdkconfig_option("CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES", False)
if not advanced.get(CONF_ENABLE_LWIP_BRIDGE_INTERFACE, False):
add_idf_sdkconfig_option("CONFIG_LWIP_BRIDGEIF_MAX_PORTS", 0)
@@ -796,9 +797,14 @@ async def to_code(config):
if advanced.get(CONF_IGNORE_EFUSE_MAC_CRC):
add_idf_sdkconfig_option("CONFIG_ESP_MAC_IGNORE_MAC_CRC_ERROR", True)
add_idf_sdkconfig_option(
"CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE", False
)
if (framework_ver.major, framework_ver.minor) >= (4, 4):
add_idf_sdkconfig_option(
"CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE", False
)
else:
add_idf_sdkconfig_option(
"CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE", False
)
if advanced.get(CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES):
_LOGGER.warning(
"Using experimental features in ESP-IDF may result in unexpected failures."

View File

@@ -56,7 +56,11 @@ void arch_init() {
void IRAM_ATTR HOT arch_feed_wdt() { esp_task_wdt_reset(); }
uint8_t progmem_read_byte(const uint8_t *addr) { return *addr; }
#if ESP_IDF_VERSION_MAJOR >= 5
uint32_t arch_get_cpu_cycle_count() { return esp_cpu_get_cycle_count(); }
#else
uint32_t arch_get_cpu_cycle_count() { return cpu_hal_get_cycle_count(); }
#endif
uint32_t arch_get_cpu_freq_hz() {
uint32_t freq = 0;
#ifdef USE_ESP_IDF

View File

@@ -29,9 +29,9 @@ class ESP32InternalGPIOPin : public InternalGPIOPin {
void attach_interrupt(void (*func)(void *), void *arg, gpio::InterruptType type) const override;
gpio_num_t pin_;
bool inverted_;
gpio_drive_cap_t drive_strength_;
gpio::Flags flags_;
bool inverted_;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static bool isr_service_installed;
};

View File

@@ -1,6 +1,7 @@
#ifdef USE_ESP32
#include "ble.h"
#include "ble_event_pool.h"
#include "esphome/core/application.h"
#include "esphome/core/helpers.h"

View File

@@ -12,8 +12,8 @@
#include "esphome/core/helpers.h"
#include "ble_event.h"
#include "esphome/core/lock_free_queue.h"
#include "esphome/core/event_pool.h"
#include "ble_event_pool.h"
#include "queue.h"
#ifdef USE_ESP32
@@ -148,8 +148,8 @@ class ESP32BLE : public Component {
std::vector<BLEStatusEventHandler *> ble_status_event_handlers_;
BLEComponentState state_{BLE_COMPONENT_STATE_OFF};
esphome::LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
esphome::EventPool<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_event_pool_;
LockFreeQueue<BLEEvent, MAX_BLE_QUEUE_SIZE> ble_events_;
BLEEventPool<MAX_BLE_QUEUE_SIZE> ble_event_pool_;
BLEAdvertising *advertising_{};
esp_ble_io_cap_t io_cap_{ESP_IO_CAP_NONE};
uint32_t advertising_cycle_time_{};

View File

@@ -134,13 +134,13 @@ class BLEEvent {
}
// Destructor to clean up heap allocations
~BLEEvent() { this->release(); }
~BLEEvent() { this->cleanup_heap_data(); }
// Default constructor for pre-allocation in pool
BLEEvent() : type_(GAP) {}
// Invoked on return to EventPool - clean up any heap-allocated data
void release() {
// Clean up any heap-allocated data
void cleanup_heap_data() {
if (this->type_ == GAP) {
return;
}
@@ -161,19 +161,19 @@ class BLEEvent {
// Load new event data for reuse (replaces previous event data)
void load_gap_event(esp_gap_ble_cb_event_t e, esp_ble_gap_cb_param_t *p) {
this->release();
this->cleanup_heap_data();
this->type_ = GAP;
this->init_gap_data_(e, p);
}
void load_gattc_event(esp_gattc_cb_event_t e, esp_gatt_if_t i, esp_ble_gattc_cb_param_t *p) {
this->release();
this->cleanup_heap_data();
this->type_ = GATTC;
this->init_gattc_data_(e, i, p);
}
void load_gatts_event(esp_gatts_cb_event_t e, esp_gatt_if_t i, esp_ble_gatts_cb_param_t *p) {
this->release();
this->cleanup_heap_data();
this->type_ = GATTS;
this->init_gatts_data_(e, i, p);
}

View File

@@ -0,0 +1,72 @@
#pragma once
#ifdef USE_ESP32
#include <atomic>
#include <cstddef>
#include "ble_event.h"
#include "queue.h"
#include "esphome/core/helpers.h"
namespace esphome {
namespace esp32_ble {
// BLE Event Pool - On-demand pool of BLEEvent objects to avoid heap fragmentation
// Events are allocated on first use and reused thereafter, growing to peak usage
template<uint8_t SIZE> class BLEEventPool {
public:
BLEEventPool() : total_created_(0) {}
~BLEEventPool() {
// Clean up any remaining events in the free list
BLEEvent *event;
while ((event = this->free_list_.pop()) != nullptr) {
delete event;
}
}
// Allocate an event from the pool
// Returns nullptr if pool is full
BLEEvent *allocate() {
// Try to get from free list first
BLEEvent *event = this->free_list_.pop();
if (event != nullptr)
return event;
// Need to create a new event
if (this->total_created_ >= SIZE) {
// Pool is at capacity
return nullptr;
}
// Use internal RAM for better performance
RAMAllocator<BLEEvent> allocator(RAMAllocator<BLEEvent>::ALLOC_INTERNAL);
event = allocator.allocate(1);
if (event == nullptr) {
// Memory allocation failed
return nullptr;
}
// Placement new to construct the object
new (event) BLEEvent();
this->total_created_++;
return event;
}
// Return an event to the pool for reuse
void release(BLEEvent *event) {
if (event != nullptr) {
this->free_list_.push(event);
}
}
private:
LockFreeQueue<BLEEvent, SIZE> free_list_; // Free events ready for reuse
uint8_t total_created_; // Total events created (high water mark)
};
} // namespace esp32_ble
} // namespace esphome
#endif

View File

@@ -0,0 +1,85 @@
#pragma once
#ifdef USE_ESP32
#include <atomic>
#include <cstddef>
/*
* BLE events come in from a separate Task (thread) in the ESP32 stack. Rather
* than using mutex-based locking, this lock-free queue allows the BLE
* task to enqueue events without blocking. The main loop() then processes
* these events at a safer time.
*
* This is a Single-Producer Single-Consumer (SPSC) lock-free ring buffer.
* The BLE task is the only producer, and the main loop() is the only consumer.
*/
namespace esphome {
namespace esp32_ble {
template<class T, uint8_t SIZE> class LockFreeQueue {
public:
LockFreeQueue() : head_(0), tail_(0), dropped_count_(0) {}
bool push(T *element) {
if (element == nullptr)
return false;
uint8_t current_tail = tail_.load(std::memory_order_relaxed);
uint8_t next_tail = (current_tail + 1) % SIZE;
if (next_tail == head_.load(std::memory_order_acquire)) {
// Buffer full
dropped_count_.fetch_add(1, std::memory_order_relaxed);
return false;
}
buffer_[current_tail] = element;
tail_.store(next_tail, std::memory_order_release);
return true;
}
T *pop() {
uint8_t current_head = head_.load(std::memory_order_relaxed);
if (current_head == tail_.load(std::memory_order_acquire)) {
return nullptr; // Empty
}
T *element = buffer_[current_head];
head_.store((current_head + 1) % SIZE, std::memory_order_release);
return element;
}
size_t size() const {
uint8_t tail = tail_.load(std::memory_order_acquire);
uint8_t head = head_.load(std::memory_order_acquire);
return (tail - head + SIZE) % SIZE;
}
uint16_t get_and_reset_dropped_count() { return dropped_count_.exchange(0, std::memory_order_relaxed); }
void increment_dropped_count() { dropped_count_.fetch_add(1, std::memory_order_relaxed); }
bool empty() const { return head_.load(std::memory_order_acquire) == tail_.load(std::memory_order_acquire); }
bool full() const {
uint8_t next_tail = (tail_.load(std::memory_order_relaxed) + 1) % SIZE;
return next_tail == head_.load(std::memory_order_acquire);
}
protected:
T *buffer_[SIZE];
// Atomic: written by producer (push/increment), read+reset by consumer (get_and_reset)
std::atomic<uint16_t> dropped_count_; // 65535 max - more than enough for drop tracking
// Atomic: written by consumer (pop), read by producer (push) to check if full
std::atomic<uint8_t> head_;
// Atomic: written by producer (push), read by consumer (pop) to check if empty
std::atomic<uint8_t> tail_;
};
} // namespace esp32_ble
} // namespace esphome
#endif

View File

@@ -496,17 +496,17 @@ float BLEClientBase::parse_char_value(uint8_t *value, uint16_t length) {
if (length > 2) {
return (float) encode_uint16(value[1], value[2]);
}
[[fallthrough]];
// fall through
case 0x7: // uint24.
if (length > 3) {
return (float) encode_uint24(value[1], value[2], value[3]);
}
[[fallthrough]];
// fall through
case 0x8: // uint32.
if (length > 4) {
return (float) encode_uint32(value[1], value[2], value[3], value[4]);
}
[[fallthrough]];
// fall through
case 0xC: // int8.
return (float) ((int8_t) value[1]);
case 0xD: // int12.
@@ -514,12 +514,12 @@ float BLEClientBase::parse_char_value(uint8_t *value, uint16_t length) {
if (length > 2) {
return (float) ((int16_t) (value[1] << 8) + (int16_t) value[2]);
}
[[fallthrough]];
// fall through
case 0xF: // int24.
if (length > 3) {
return (float) ((int32_t) (value[1] << 16) + (int32_t) (value[2] << 8) + (int32_t) (value[3]));
}
[[fallthrough]];
// fall through
case 0x10: // int32.
if (length > 4) {
return (float) ((int32_t) (value[1] << 24) + (int32_t) (value[2] << 16) + (int32_t) (value[3] << 8) +

View File

@@ -29,6 +29,8 @@ from esphome.const import (
CONF_ON_BLE_SERVICE_DATA_ADVERTISE,
CONF_SERVICE_UUID,
CONF_TRIGGER_ID,
KEY_CORE,
KEY_FRAMEWORK_VERSION,
)
from esphome.core import CORE
@@ -321,7 +323,10 @@ async def to_code(config):
# https://github.com/espressif/esp-idf/issues/2503
# Match arduino CONFIG_BTU_TASK_STACK_SIZE
# https://github.com/espressif/arduino-esp32/blob/fd72cf46ad6fc1a6de99c1d83ba8eba17d80a4ee/tools/sdk/esp32/sdkconfig#L1866
add_idf_sdkconfig_option("CONFIG_BT_BTU_TASK_STACK_SIZE", 8192)
if CORE.data[KEY_CORE][KEY_FRAMEWORK_VERSION] >= cv.Version(4, 4, 6):
add_idf_sdkconfig_option("CONFIG_BT_BTU_TASK_STACK_SIZE", 8192)
else:
add_idf_sdkconfig_option("CONFIG_BTU_TASK_STACK_SIZE", 8192)
add_idf_sdkconfig_option("CONFIG_BT_ACL_CONNECTIONS", 9)
add_idf_sdkconfig_option(
"CONFIG_BTDM_CTRL_BLE_MAX_CONN", config[CONF_MAX_CONNECTIONS]
@@ -330,7 +335,8 @@ async def to_code(config):
# max notifications in 5.x, setting CONFIG_BT_ACL_CONNECTIONS
# is enough in 4.x
# https://github.com/esphome/issues/issues/6808
add_idf_sdkconfig_option("CONFIG_BT_GATTC_NOTIF_REG_MAX", 9)
if CORE.data[KEY_CORE][KEY_FRAMEWORK_VERSION] >= cv.Version(5, 0, 0):
add_idf_sdkconfig_option("CONFIG_BT_GATTC_NOTIF_REG_MAX", 9)
cg.add_define("USE_OTA_STATE_CALLBACK") # To be notified when an OTA update starts
cg.add_define("USE_ESP32_BLE_CLIENT")

View File

@@ -18,7 +18,7 @@
#include <cinttypes>
#ifdef USE_OTA
#include "esphome/components/ota_base/ota_backend.h"
#include "esphome/components/ota/ota_backend.h"
#endif
#ifdef USE_ESP32_BLE_SOFTWARE_COEXISTENCE
@@ -61,9 +61,9 @@ void ESP32BLETracker::setup() {
global_esp32_ble_tracker = this;
#ifdef USE_OTA
ota_base::get_global_ota_callback()->add_on_state_callback(
[this](ota_base::OTAState state, float progress, uint8_t error, ota_base::OTAComponent *comp) {
if (state == ota_base::OTA_STARTED) {
ota::get_global_ota_callback()->add_on_state_callback(
[this](ota::OTAState state, float progress, uint8_t error, ota::OTAComponent *comp) {
if (state == ota::OTA_STARTED) {
this->stop_scan();
for (auto *client : this->clients_) {
client->disconnect();

View File

@@ -310,7 +310,11 @@ async def to_code(config):
cg.add_define("USE_ESP32_CAMERA")
if CORE.using_esp_idf:
add_idf_component(name="espressif/esp32-camera", ref="2.0.15")
add_idf_component(
name="esp32-camera",
repo="https://github.com/espressif/esp32-camera.git",
ref="v2.0.15",
)
for conf in config.get(CONF_ON_STREAM_START, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)

View File

@@ -1,101 +0,0 @@
import os
from esphome import pins
from esphome.components import esp32
import esphome.config_validation as cv
from esphome.const import (
CONF_CLK_PIN,
CONF_RESET_PIN,
CONF_VARIANT,
KEY_CORE,
KEY_FRAMEWORK_VERSION,
)
from esphome.core import CORE
CODEOWNERS = ["@swoboda1337"]
CONF_ACTIVE_HIGH = "active_high"
CONF_CMD_PIN = "cmd_pin"
CONF_D0_PIN = "d0_pin"
CONF_D1_PIN = "d1_pin"
CONF_D2_PIN = "d2_pin"
CONF_D3_PIN = "d3_pin"
CONF_SLOT = "slot"
CONFIG_SCHEMA = cv.All(
cv.Schema(
{
cv.Required(CONF_VARIANT): cv.one_of(*esp32.VARIANTS, upper=True),
cv.Required(CONF_ACTIVE_HIGH): cv.boolean,
cv.Required(CONF_CLK_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_CMD_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_D0_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_D1_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_D2_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_D3_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_RESET_PIN): pins.internal_gpio_output_pin_number,
cv.Optional(CONF_SLOT, default=1): cv.int_range(min=0, max=1),
}
),
)
async def to_code(config):
if config[CONF_ACTIVE_HIGH]:
esp32.add_idf_sdkconfig_option(
"CONFIG_ESP_HOSTED_SDIO_RESET_ACTIVE_HIGH",
True,
)
else:
esp32.add_idf_sdkconfig_option(
"CONFIG_ESP_HOSTED_SDIO_RESET_ACTIVE_LOW",
True,
)
esp32.add_idf_sdkconfig_option(
"CONFIG_ESP_HOSTED_SDIO_GPIO_RESET_SLAVE", # NOLINT
config[CONF_RESET_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_SLAVE_IDF_TARGET_{config[CONF_VARIANT]}", # NOLINT
True,
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_SDIO_SLOT_{config[CONF_SLOT]}",
True,
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_CLK_SLOT_{config[CONF_SLOT]}",
config[CONF_CLK_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_CMD_SLOT_{config[CONF_SLOT]}",
config[CONF_CMD_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_D0_SLOT_{config[CONF_SLOT]}",
config[CONF_D0_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_D1_4BIT_BUS_SLOT_{config[CONF_SLOT]}",
config[CONF_D1_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_D2_4BIT_BUS_SLOT_{config[CONF_SLOT]}",
config[CONF_D2_PIN],
)
esp32.add_idf_sdkconfig_option(
f"CONFIG_ESP_HOSTED_PRIV_SDIO_PIN_D3_4BIT_BUS_SLOT_{config[CONF_SLOT]}",
config[CONF_D3_PIN],
)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_HOSTED_CUSTOM_SDIO_PINS", True)
framework_ver: cv.Version = CORE.data[KEY_CORE][KEY_FRAMEWORK_VERSION]
os.environ["ESP_IDF_VERSION"] = f"{framework_ver.major}.{framework_ver.minor}"
esp32.add_idf_component(name="espressif/esp_wifi_remote", ref="0.10.2")
esp32.add_idf_component(name="espressif/eppp_link", ref="0.2.0")
esp32.add_idf_component(name="espressif/esp_hosted", ref="2.0.11")
esp32.add_extra_script(
"post",
"esp32_hosted.py",
os.path.join(os.path.dirname(__file__), "esp32_hosted.py.script"),
)

View File

@@ -1,12 +0,0 @@
# pylint: disable=E0602
Import("env") # noqa
# Workaround whole archive issue
if "__LIB_DEPS" in env and "libespressif__esp_hosted.a" in env["__LIB_DEPS"]:
env.Append(
LINKFLAGS=[
"-Wl,--whole-archive",
env["BUILD_DIR"] + "/esp-idf/espressif__esp_hosted/libespressif__esp_hosted.a",
"-Wl,--no-whole-archive",
]
)

View File

@@ -21,43 +21,6 @@ static const uint32_t RMT_CLK_FREQ = 80000000;
static const uint8_t RMT_CLK_DIV = 2;
#endif
static const size_t RMT_SYMBOLS_PER_BYTE = 8;
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
static size_t IRAM_ATTR HOT encoder_callback(const void *data, size_t size, size_t symbols_written, size_t symbols_free,
rmt_symbol_word_t *symbols, bool *done, void *arg) {
auto *params = static_cast<LedParams *>(arg);
const auto *bytes = static_cast<const uint8_t *>(data);
size_t index = symbols_written / RMT_SYMBOLS_PER_BYTE;
// convert byte to symbols
if (index < size) {
if (symbols_free < RMT_SYMBOLS_PER_BYTE) {
return 0;
}
for (int32_t i = 0; i < RMT_SYMBOLS_PER_BYTE; i++) {
if (bytes[index] & (1 << (7 - i))) {
symbols[i] = params->bit1;
} else {
symbols[i] = params->bit0;
}
}
if ((index + 1) >= size && params->reset.duration0 == 0 && params->reset.duration1 == 0) {
*done = true;
}
return RMT_SYMBOLS_PER_BYTE;
}
// send reset
if (symbols_free < 1) {
return 0;
}
symbols[0] = params->reset;
*done = true;
return 1;
}
#endif
void ESP32RMTLEDStripLightOutput::setup() {
ESP_LOGCONFIG(TAG, "Running setup");
@@ -79,15 +42,10 @@ void ESP32RMTLEDStripLightOutput::setup() {
return;
}
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
// copy of the led buffer
this->rmt_buf_ = allocator.allocate(buffer_size);
#else
RAMAllocator<rmt_symbol_word_t> rmt_allocator(this->use_psram_ ? 0 : RAMAllocator<rmt_symbol_word_t>::ALLOC_INTERNAL);
// 8 bits per byte, 1 rmt_symbol_word_t per bit + 1 rmt_symbol_word_t for reset
this->rmt_buf_ = rmt_allocator.allocate(buffer_size * 8 + 1);
#endif
rmt_tx_channel_config_t channel;
memset(&channel, 0, sizeof(channel));
@@ -107,18 +65,6 @@ void ESP32RMTLEDStripLightOutput::setup() {
return;
}
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
rmt_simple_encoder_config_t encoder;
memset(&encoder, 0, sizeof(encoder));
encoder.callback = encoder_callback;
encoder.arg = &this->params_;
encoder.min_chunk_size = 8;
if (rmt_new_simple_encoder(&encoder, &this->encoder_) != ESP_OK) {
ESP_LOGE(TAG, "Encoder creation failed");
this->mark_failed();
return;
}
#else
rmt_copy_encoder_config_t encoder;
memset(&encoder, 0, sizeof(encoder));
if (rmt_new_copy_encoder(&encoder, &this->encoder_) != ESP_OK) {
@@ -126,7 +72,6 @@ void ESP32RMTLEDStripLightOutput::setup() {
this->mark_failed();
return;
}
#endif
if (rmt_enable(this->channel_) != ESP_OK) {
ESP_LOGE(TAG, "Enabling channel failed");
@@ -140,20 +85,20 @@ void ESP32RMTLEDStripLightOutput::set_led_params(uint32_t bit0_high, uint32_t bi
float ratio = (float) RMT_CLK_FREQ / RMT_CLK_DIV / 1e09f;
// 0-bit
this->params_.bit0.duration0 = (uint32_t) (ratio * bit0_high);
this->params_.bit0.level0 = 1;
this->params_.bit0.duration1 = (uint32_t) (ratio * bit0_low);
this->params_.bit0.level1 = 0;
this->bit0_.duration0 = (uint32_t) (ratio * bit0_high);
this->bit0_.level0 = 1;
this->bit0_.duration1 = (uint32_t) (ratio * bit0_low);
this->bit0_.level1 = 0;
// 1-bit
this->params_.bit1.duration0 = (uint32_t) (ratio * bit1_high);
this->params_.bit1.level0 = 1;
this->params_.bit1.duration1 = (uint32_t) (ratio * bit1_low);
this->params_.bit1.level1 = 0;
this->bit1_.duration0 = (uint32_t) (ratio * bit1_high);
this->bit1_.level0 = 1;
this->bit1_.duration1 = (uint32_t) (ratio * bit1_low);
this->bit1_.level1 = 0;
// reset
this->params_.reset.duration0 = (uint32_t) (ratio * reset_time_high);
this->params_.reset.level0 = 1;
this->params_.reset.duration1 = (uint32_t) (ratio * reset_time_low);
this->params_.reset.level1 = 0;
this->reset_.duration0 = (uint32_t) (ratio * reset_time_high);
this->reset_.level0 = 1;
this->reset_.duration1 = (uint32_t) (ratio * reset_time_low);
this->reset_.level1 = 0;
}
void ESP32RMTLEDStripLightOutput::write_state(light::LightState *state) {
@@ -177,9 +122,6 @@ void ESP32RMTLEDStripLightOutput::write_state(light::LightState *state) {
}
delayMicroseconds(50);
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
memcpy(this->rmt_buf_, this->buf_, this->get_buffer_size_());
#else
size_t buffer_size = this->get_buffer_size_();
size_t size = 0;
@@ -189,7 +131,7 @@ void ESP32RMTLEDStripLightOutput::write_state(light::LightState *state) {
while (size < buffer_size) {
uint8_t b = *psrc;
for (int i = 0; i < 8; i++) {
pdest->val = b & (1 << (7 - i)) ? this->params_.bit1.val : this->params_.bit0.val;
pdest->val = b & (1 << (7 - i)) ? this->bit1_.val : this->bit0_.val;
pdest++;
len++;
}
@@ -197,20 +139,17 @@ void ESP32RMTLEDStripLightOutput::write_state(light::LightState *state) {
psrc++;
}
if (this->params_.reset.duration0 > 0 || this->params_.reset.duration1 > 0) {
pdest->val = this->params_.reset.val;
if (this->reset_.duration0 > 0 || this->reset_.duration1 > 0) {
pdest->val = this->reset_.val;
pdest++;
len++;
}
#endif
rmt_transmit_config_t config;
memset(&config, 0, sizeof(config));
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
error = rmt_transmit(this->channel_, this->encoder_, this->rmt_buf_, this->get_buffer_size_(), &config);
#else
config.loop_count = 0;
config.flags.eot_level = 0;
error = rmt_transmit(this->channel_, this->encoder_, this->rmt_buf_, len * sizeof(rmt_symbol_word_t), &config);
#endif
if (error != ESP_OK) {
ESP_LOGE(TAG, "RMT TX error");
this->status_set_warning();

View File

@@ -25,12 +25,6 @@ enum RGBOrder : uint8_t {
ORDER_BRG,
};
struct LedParams {
rmt_symbol_word_t bit0;
rmt_symbol_word_t bit1;
rmt_symbol_word_t reset;
};
class ESP32RMTLEDStripLightOutput : public light::AddressableLight {
public:
void setup() override;
@@ -78,15 +72,12 @@ class ESP32RMTLEDStripLightOutput : public light::AddressableLight {
uint8_t *buf_{nullptr};
uint8_t *effect_data_{nullptr};
LedParams params_;
rmt_channel_handle_t channel_{nullptr};
rmt_encoder_handle_t encoder_{nullptr};
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
uint8_t *rmt_buf_{nullptr};
#else
rmt_symbol_word_t *rmt_buf_{nullptr};
#endif
rmt_symbol_word_t bit0_, bit1_, reset_;
uint32_t rmt_symbols_{48};
uint8_t pin_;
uint16_t num_leds_;
bool is_rgbw_{false};

View File

@@ -0,0 +1,355 @@
#ifdef USE_ESP32
#include "esp32_touch.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include <cinttypes>
namespace esphome {
namespace esp32_touch {
static const char *const TAG = "esp32_touch";
void ESP32TouchComponent::setup() {
ESP_LOGCONFIG(TAG, "Running setup");
touch_pad_init();
// set up and enable/start filtering based on ESP32 variant
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
if (this->filter_configured_()) {
touch_filter_config_t filter_info = {
.mode = this->filter_mode_,
.debounce_cnt = this->debounce_count_,
.noise_thr = this->noise_threshold_,
.jitter_step = this->jitter_step_,
.smh_lvl = this->smooth_level_,
};
touch_pad_filter_set_config(&filter_info);
touch_pad_filter_enable();
}
if (this->denoise_configured_()) {
touch_pad_denoise_t denoise = {
.grade = this->grade_,
.cap_level = this->cap_level_,
};
touch_pad_denoise_set_config(&denoise);
touch_pad_denoise_enable();
}
if (this->waterproof_configured_()) {
touch_pad_waterproof_t waterproof = {
.guard_ring_pad = this->waterproof_guard_ring_pad_,
.shield_driver = this->waterproof_shield_driver_,
};
touch_pad_waterproof_set_config(&waterproof);
touch_pad_waterproof_enable();
}
#else
if (this->iir_filter_enabled_()) {
touch_pad_filter_start(this->iir_filter_);
}
#endif
#if ESP_IDF_VERSION_MAJOR >= 5 && defined(USE_ESP32_VARIANT_ESP32)
touch_pad_set_measurement_clock_cycles(this->meas_cycle_);
touch_pad_set_measurement_interval(this->sleep_cycle_);
#else
touch_pad_set_meas_time(this->sleep_cycle_, this->meas_cycle_);
#endif
touch_pad_set_voltage(this->high_voltage_reference_, this->low_voltage_reference_, this->voltage_attenuation_);
for (auto *child : this->children_) {
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
touch_pad_config(child->get_touch_pad());
#else
// Disable interrupt threshold
touch_pad_config(child->get_touch_pad(), 0);
#endif
}
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
touch_pad_set_fsm_mode(TOUCH_FSM_MODE_TIMER);
touch_pad_fsm_start();
#endif
}
void ESP32TouchComponent::dump_config() {
ESP_LOGCONFIG(TAG,
"Config for ESP32 Touch Hub:\n"
" Meas cycle: %.2fms\n"
" Sleep cycle: %.2fms",
this->meas_cycle_ / (8000000.0f / 1000.0f), this->sleep_cycle_ / (150000.0f / 1000.0f));
const char *lv_s;
switch (this->low_voltage_reference_) {
case TOUCH_LVOLT_0V5:
lv_s = "0.5V";
break;
case TOUCH_LVOLT_0V6:
lv_s = "0.6V";
break;
case TOUCH_LVOLT_0V7:
lv_s = "0.7V";
break;
case TOUCH_LVOLT_0V8:
lv_s = "0.8V";
break;
default:
lv_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Low Voltage Reference: %s", lv_s);
const char *hv_s;
switch (this->high_voltage_reference_) {
case TOUCH_HVOLT_2V4:
hv_s = "2.4V";
break;
case TOUCH_HVOLT_2V5:
hv_s = "2.5V";
break;
case TOUCH_HVOLT_2V6:
hv_s = "2.6V";
break;
case TOUCH_HVOLT_2V7:
hv_s = "2.7V";
break;
default:
hv_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " High Voltage Reference: %s", hv_s);
const char *atten_s;
switch (this->voltage_attenuation_) {
case TOUCH_HVOLT_ATTEN_1V5:
atten_s = "1.5V";
break;
case TOUCH_HVOLT_ATTEN_1V:
atten_s = "1V";
break;
case TOUCH_HVOLT_ATTEN_0V5:
atten_s = "0.5V";
break;
case TOUCH_HVOLT_ATTEN_0V:
atten_s = "0V";
break;
default:
atten_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Voltage Attenuation: %s", atten_s);
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
if (this->filter_configured_()) {
const char *filter_mode_s;
switch (this->filter_mode_) {
case TOUCH_PAD_FILTER_IIR_4:
filter_mode_s = "IIR_4";
break;
case TOUCH_PAD_FILTER_IIR_8:
filter_mode_s = "IIR_8";
break;
case TOUCH_PAD_FILTER_IIR_16:
filter_mode_s = "IIR_16";
break;
case TOUCH_PAD_FILTER_IIR_32:
filter_mode_s = "IIR_32";
break;
case TOUCH_PAD_FILTER_IIR_64:
filter_mode_s = "IIR_64";
break;
case TOUCH_PAD_FILTER_IIR_128:
filter_mode_s = "IIR_128";
break;
case TOUCH_PAD_FILTER_IIR_256:
filter_mode_s = "IIR_256";
break;
case TOUCH_PAD_FILTER_JITTER:
filter_mode_s = "JITTER";
break;
default:
filter_mode_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG,
" Filter mode: %s\n"
" Debounce count: %" PRIu32 "\n"
" Noise threshold coefficient: %" PRIu32 "\n"
" Jitter filter step size: %" PRIu32,
filter_mode_s, this->debounce_count_, this->noise_threshold_, this->jitter_step_);
const char *smooth_level_s;
switch (this->smooth_level_) {
case TOUCH_PAD_SMOOTH_OFF:
smooth_level_s = "OFF";
break;
case TOUCH_PAD_SMOOTH_IIR_2:
smooth_level_s = "IIR_2";
break;
case TOUCH_PAD_SMOOTH_IIR_4:
smooth_level_s = "IIR_4";
break;
case TOUCH_PAD_SMOOTH_IIR_8:
smooth_level_s = "IIR_8";
break;
default:
smooth_level_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Smooth level: %s", smooth_level_s);
}
if (this->denoise_configured_()) {
const char *grade_s;
switch (this->grade_) {
case TOUCH_PAD_DENOISE_BIT12:
grade_s = "BIT12";
break;
case TOUCH_PAD_DENOISE_BIT10:
grade_s = "BIT10";
break;
case TOUCH_PAD_DENOISE_BIT8:
grade_s = "BIT8";
break;
case TOUCH_PAD_DENOISE_BIT4:
grade_s = "BIT4";
break;
default:
grade_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Denoise grade: %s", grade_s);
const char *cap_level_s;
switch (this->cap_level_) {
case TOUCH_PAD_DENOISE_CAP_L0:
cap_level_s = "L0";
break;
case TOUCH_PAD_DENOISE_CAP_L1:
cap_level_s = "L1";
break;
case TOUCH_PAD_DENOISE_CAP_L2:
cap_level_s = "L2";
break;
case TOUCH_PAD_DENOISE_CAP_L3:
cap_level_s = "L3";
break;
case TOUCH_PAD_DENOISE_CAP_L4:
cap_level_s = "L4";
break;
case TOUCH_PAD_DENOISE_CAP_L5:
cap_level_s = "L5";
break;
case TOUCH_PAD_DENOISE_CAP_L6:
cap_level_s = "L6";
break;
case TOUCH_PAD_DENOISE_CAP_L7:
cap_level_s = "L7";
break;
default:
cap_level_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Denoise capacitance level: %s", cap_level_s);
}
#else
if (this->iir_filter_enabled_()) {
ESP_LOGCONFIG(TAG, " IIR Filter: %" PRIu32 "ms", this->iir_filter_);
} else {
ESP_LOGCONFIG(TAG, " IIR Filter DISABLED");
}
#endif
if (this->setup_mode_) {
ESP_LOGCONFIG(TAG, " Setup Mode ENABLED");
}
for (auto *child : this->children_) {
LOG_BINARY_SENSOR(" ", "Touch Pad", child);
ESP_LOGCONFIG(TAG, " Pad: T%" PRIu32, (uint32_t) child->get_touch_pad());
ESP_LOGCONFIG(TAG, " Threshold: %" PRIu32, child->get_threshold());
}
}
uint32_t ESP32TouchComponent::component_touch_pad_read(touch_pad_t tp) {
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
uint32_t value = 0;
if (this->filter_configured_()) {
touch_pad_filter_read_smooth(tp, &value);
} else {
touch_pad_read_raw_data(tp, &value);
}
#else
uint16_t value = 0;
if (this->iir_filter_enabled_()) {
touch_pad_read_filtered(tp, &value);
} else {
touch_pad_read(tp, &value);
}
#endif
return value;
}
void ESP32TouchComponent::loop() {
const uint32_t now = App.get_loop_component_start_time();
bool should_print = this->setup_mode_ && now - this->setup_mode_last_log_print_ > 250;
for (auto *child : this->children_) {
child->value_ = this->component_touch_pad_read(child->get_touch_pad());
#if !(defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3))
child->publish_state(child->value_ < child->get_threshold());
#else
child->publish_state(child->value_ > child->get_threshold());
#endif
if (should_print) {
ESP_LOGD(TAG, "Touch Pad '%s' (T%" PRIu32 "): %" PRIu32, child->get_name().c_str(),
(uint32_t) child->get_touch_pad(), child->value_);
}
App.feed_wdt();
}
if (should_print) {
// Avoid spamming logs
this->setup_mode_last_log_print_ = now;
}
}
void ESP32TouchComponent::on_shutdown() {
bool is_wakeup_source = false;
#if !(defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3))
if (this->iir_filter_enabled_()) {
touch_pad_filter_stop();
touch_pad_filter_delete();
}
#endif
for (auto *child : this->children_) {
if (child->get_wakeup_threshold() != 0) {
if (!is_wakeup_source) {
is_wakeup_source = true;
// Touch sensor FSM mode must be 'TOUCH_FSM_MODE_TIMER' to use it to wake-up.
touch_pad_set_fsm_mode(TOUCH_FSM_MODE_TIMER);
}
#if !(defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3))
// No filter available when using as wake-up source.
touch_pad_config(child->get_touch_pad(), child->get_wakeup_threshold());
#endif
}
}
if (!is_wakeup_source) {
touch_pad_deinit();
}
}
ESP32TouchBinarySensor::ESP32TouchBinarySensor(touch_pad_t touch_pad, uint32_t threshold, uint32_t wakeup_threshold)
: touch_pad_(touch_pad), threshold_(threshold), wakeup_threshold_(wakeup_threshold) {}
} // namespace esp32_touch
} // namespace esphome
#endif

View File

@@ -9,26 +9,10 @@
#include <vector>
#include <driver/touch_sensor.h>
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
namespace esphome {
namespace esp32_touch {
// IMPORTANT: Touch detection logic differs between ESP32 variants:
// - ESP32 v1 (original): Touch detected when value < threshold (capacitance increase causes value decrease)
// - ESP32-S2/S3 v2: Touch detected when value > threshold (capacitance increase causes value increase)
// This inversion is due to different hardware implementations between chip generations.
//
// INTERRUPT BEHAVIOR:
// - ESP32 v1: Interrupts fire when ANY pad is touched and continue while touched.
// Releases are detected by timeout since hardware doesn't generate release interrupts.
// - ESP32-S2/S3 v2: Hardware supports both touch and release interrupts, but release
// interrupts are unreliable and sometimes don't fire. We now only use touch interrupts
// and detect releases via timeout, similar to v1.
static const uint32_t SETUP_MODE_LOG_INTERVAL_MS = 250;
class ESP32TouchBinarySensor;
class ESP32TouchComponent : public Component {
@@ -47,14 +31,6 @@ class ESP32TouchComponent : public Component {
void set_voltage_attenuation(touch_volt_atten_t voltage_attenuation) {
this->voltage_attenuation_ = voltage_attenuation;
}
void setup() override;
void dump_config() override;
void loop() override;
float get_setup_priority() const override { return setup_priority::DATA; }
void on_shutdown() override;
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
void set_filter_mode(touch_filter_mode_t filter_mode) { this->filter_mode_ = filter_mode; }
void set_debounce_count(uint32_t debounce_count) { this->debounce_count_ = debounce_count; }
@@ -71,101 +47,17 @@ class ESP32TouchComponent : public Component {
void set_iir_filter(uint32_t iir_filter) { this->iir_filter_ = iir_filter; }
#endif
protected:
// Common helper methods
void dump_config_base_();
void dump_config_sensors_();
bool create_touch_queue_();
void cleanup_touch_queue_();
void configure_wakeup_pads_();
uint32_t component_touch_pad_read(touch_pad_t tp);
// Helper methods for loop() logic
void process_setup_mode_logging_(uint32_t now);
bool should_check_for_releases_(uint32_t now);
void publish_initial_state_if_needed_(ESP32TouchBinarySensor *child, uint32_t now);
void check_and_disable_loop_if_all_released_(size_t pads_off);
void calculate_release_timeout_();
void setup() override;
void dump_config() override;
void loop() override;
float get_setup_priority() const override { return setup_priority::DATA; }
// Common members
std::vector<ESP32TouchBinarySensor *> children_;
bool setup_mode_{false};
uint32_t setup_mode_last_log_print_{0};
uint32_t last_release_check_{0};
uint32_t release_timeout_ms_{1500};
uint32_t release_check_interval_ms_{50};
bool initial_state_published_[TOUCH_PAD_MAX] = {false};
// Common configuration parameters
uint16_t sleep_cycle_{4095};
uint16_t meas_cycle_{65535};
touch_low_volt_t low_voltage_reference_{TOUCH_LVOLT_0V5};
touch_high_volt_t high_voltage_reference_{TOUCH_HVOLT_2V7};
touch_volt_atten_t voltage_attenuation_{TOUCH_HVOLT_ATTEN_0V};
// Common constants
static constexpr uint32_t MINIMUM_RELEASE_TIME_MS = 100;
// ==================== PLATFORM SPECIFIC ====================
#ifdef USE_ESP32_VARIANT_ESP32
// ESP32 v1 specific
static void touch_isr_handler(void *arg);
QueueHandle_t touch_queue_{nullptr};
private:
// Touch event structure for ESP32 v1
// Contains touch pad info, value, and touch state for queue communication
struct TouchPadEventV1 {
touch_pad_t pad;
uint32_t value;
bool is_touched;
};
void on_shutdown() override;
protected:
// Design note: last_touch_time_ does not require synchronization primitives because:
// 1. ESP32 guarantees atomic 32-bit aligned reads/writes
// 2. ISR only writes timestamps, main loop only reads
// 3. Timing tolerance allows for occasional stale reads (50ms check interval)
// 4. Queue operations provide implicit memory barriers
// Using atomic/critical sections would add overhead without meaningful benefit
uint32_t last_touch_time_[TOUCH_PAD_MAX] = {0};
uint32_t iir_filter_{0};
bool iir_filter_enabled_() const { return this->iir_filter_ > 0; }
#elif defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
// ESP32-S2/S3 v2 specific
static void touch_isr_handler(void *arg);
QueueHandle_t touch_queue_{nullptr};
private:
// Touch event structure for ESP32 v2 (S2/S3)
// Contains touch pad and interrupt mask for queue communication
struct TouchPadEventV2 {
touch_pad_t pad;
uint32_t intr_mask;
};
// Track last touch time for timeout-based release detection
uint32_t last_touch_time_[TOUCH_PAD_MAX] = {0};
protected:
// Filter configuration
touch_filter_mode_t filter_mode_{TOUCH_PAD_FILTER_MAX};
uint32_t debounce_count_{0};
uint32_t noise_threshold_{0};
uint32_t jitter_step_{0};
touch_smooth_mode_t smooth_level_{TOUCH_PAD_SMOOTH_MAX};
// Denoise configuration
touch_pad_denoise_grade_t grade_{TOUCH_PAD_DENOISE_MAX};
touch_pad_denoise_cap_t cap_level_{TOUCH_PAD_DENOISE_CAP_MAX};
// Waterproof configuration
touch_pad_t waterproof_guard_ring_pad_{TOUCH_PAD_MAX};
touch_pad_shield_driver_t waterproof_shield_driver_{TOUCH_PAD_SHIELD_DRV_MAX};
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
bool filter_configured_() const {
return (this->filter_mode_ != TOUCH_PAD_FILTER_MAX) && (this->smooth_level_ != TOUCH_PAD_SMOOTH_MAX);
}
@@ -176,78 +68,43 @@ class ESP32TouchComponent : public Component {
return (this->waterproof_guard_ring_pad_ != TOUCH_PAD_MAX) &&
(this->waterproof_shield_driver_ != TOUCH_PAD_SHIELD_DRV_MAX);
}
// Helper method to read touch values - non-blocking operation
// Returns the current touch pad value using either filtered or raw reading
// based on the filter configuration
uint32_t read_touch_value(touch_pad_t pad) const;
// Helper to update touch state with a known state
void update_touch_state_(ESP32TouchBinarySensor *child, bool is_touched);
// Helper to read touch value and update state for a given child
bool check_and_update_touch_state_(ESP32TouchBinarySensor *child);
#else
bool iir_filter_enabled_() const { return this->iir_filter_ > 0; }
#endif
// Helper functions for dump_config - common to both implementations
static const char *get_low_voltage_reference_str(touch_low_volt_t ref) {
switch (ref) {
case TOUCH_LVOLT_0V5:
return "0.5V";
case TOUCH_LVOLT_0V6:
return "0.6V";
case TOUCH_LVOLT_0V7:
return "0.7V";
case TOUCH_LVOLT_0V8:
return "0.8V";
default:
return "UNKNOWN";
}
}
static const char *get_high_voltage_reference_str(touch_high_volt_t ref) {
switch (ref) {
case TOUCH_HVOLT_2V4:
return "2.4V";
case TOUCH_HVOLT_2V5:
return "2.5V";
case TOUCH_HVOLT_2V6:
return "2.6V";
case TOUCH_HVOLT_2V7:
return "2.7V";
default:
return "UNKNOWN";
}
}
static const char *get_voltage_attenuation_str(touch_volt_atten_t atten) {
switch (atten) {
case TOUCH_HVOLT_ATTEN_1V5:
return "1.5V";
case TOUCH_HVOLT_ATTEN_1V:
return "1V";
case TOUCH_HVOLT_ATTEN_0V5:
return "0.5V";
case TOUCH_HVOLT_ATTEN_0V:
return "0V";
default:
return "UNKNOWN";
}
}
std::vector<ESP32TouchBinarySensor *> children_;
bool setup_mode_{false};
uint32_t setup_mode_last_log_print_{0};
// common parameters
uint16_t sleep_cycle_{4095};
uint16_t meas_cycle_{65535};
touch_low_volt_t low_voltage_reference_{TOUCH_LVOLT_0V5};
touch_high_volt_t high_voltage_reference_{TOUCH_HVOLT_2V7};
touch_volt_atten_t voltage_attenuation_{TOUCH_HVOLT_ATTEN_0V};
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
touch_filter_mode_t filter_mode_{TOUCH_PAD_FILTER_MAX};
uint32_t debounce_count_{0};
uint32_t noise_threshold_{0};
uint32_t jitter_step_{0};
touch_smooth_mode_t smooth_level_{TOUCH_PAD_SMOOTH_MAX};
touch_pad_denoise_grade_t grade_{TOUCH_PAD_DENOISE_MAX};
touch_pad_denoise_cap_t cap_level_{TOUCH_PAD_DENOISE_CAP_MAX};
touch_pad_t waterproof_guard_ring_pad_{TOUCH_PAD_MAX};
touch_pad_shield_driver_t waterproof_shield_driver_{TOUCH_PAD_SHIELD_DRV_MAX};
#else
uint32_t iir_filter_{0};
#endif
};
/// Simple helper class to expose a touch pad value as a binary sensor.
class ESP32TouchBinarySensor : public binary_sensor::BinarySensor {
public:
ESP32TouchBinarySensor(touch_pad_t touch_pad, uint32_t threshold, uint32_t wakeup_threshold)
: touch_pad_(touch_pad), threshold_(threshold), wakeup_threshold_(wakeup_threshold) {}
ESP32TouchBinarySensor(touch_pad_t touch_pad, uint32_t threshold, uint32_t wakeup_threshold);
touch_pad_t get_touch_pad() const { return this->touch_pad_; }
uint32_t get_threshold() const { return this->threshold_; }
void set_threshold(uint32_t threshold) { this->threshold_ = threshold; }
#ifdef USE_ESP32_VARIANT_ESP32
uint32_t get_value() const { return this->value_; }
#endif
uint32_t get_wakeup_threshold() const { return this->wakeup_threshold_; }
protected:
@@ -255,10 +112,7 @@ class ESP32TouchBinarySensor : public binary_sensor::BinarySensor {
touch_pad_t touch_pad_{TOUCH_PAD_MAX};
uint32_t threshold_{0};
#ifdef USE_ESP32_VARIANT_ESP32
uint32_t value_{0};
#endif
bool last_state_{false};
const uint32_t wakeup_threshold_{0};
};

View File

@@ -1,159 +0,0 @@
#ifdef USE_ESP32
#include "esp32_touch.h"
#include "esphome/core/log.h"
#include <cinttypes>
#include "soc/rtc.h"
namespace esphome {
namespace esp32_touch {
static const char *const TAG = "esp32_touch";
void ESP32TouchComponent::dump_config_base_() {
const char *lv_s = get_low_voltage_reference_str(this->low_voltage_reference_);
const char *hv_s = get_high_voltage_reference_str(this->high_voltage_reference_);
const char *atten_s = get_voltage_attenuation_str(this->voltage_attenuation_);
ESP_LOGCONFIG(TAG,
"Config for ESP32 Touch Hub:\n"
" Meas cycle: %.2fms\n"
" Sleep cycle: %.2fms\n"
" Low Voltage Reference: %s\n"
" High Voltage Reference: %s\n"
" Voltage Attenuation: %s",
this->meas_cycle_ / (8000000.0f / 1000.0f), this->sleep_cycle_ / (150000.0f / 1000.0f), lv_s, hv_s,
atten_s);
}
void ESP32TouchComponent::dump_config_sensors_() {
for (auto *child : this->children_) {
LOG_BINARY_SENSOR(" ", "Touch Pad", child);
ESP_LOGCONFIG(TAG, " Pad: T%" PRIu32, (uint32_t) child->get_touch_pad());
ESP_LOGCONFIG(TAG, " Threshold: %" PRIu32, child->get_threshold());
}
}
bool ESP32TouchComponent::create_touch_queue_() {
// Queue size calculation: children * 4 allows for burst scenarios where ISR
// fires multiple times before main loop processes.
size_t queue_size = this->children_.size() * 4;
if (queue_size < 8)
queue_size = 8;
#ifdef USE_ESP32_VARIANT_ESP32
this->touch_queue_ = xQueueCreate(queue_size, sizeof(TouchPadEventV1));
#else
this->touch_queue_ = xQueueCreate(queue_size, sizeof(TouchPadEventV2));
#endif
if (this->touch_queue_ == nullptr) {
ESP_LOGE(TAG, "Failed to create touch event queue of size %" PRIu32, (uint32_t) queue_size);
this->mark_failed();
return false;
}
return true;
}
void ESP32TouchComponent::cleanup_touch_queue_() {
if (this->touch_queue_) {
vQueueDelete(this->touch_queue_);
this->touch_queue_ = nullptr;
}
}
void ESP32TouchComponent::configure_wakeup_pads_() {
bool is_wakeup_source = false;
// Check if any pad is configured for wakeup
for (auto *child : this->children_) {
if (child->get_wakeup_threshold() != 0) {
is_wakeup_source = true;
#ifdef USE_ESP32_VARIANT_ESP32
// ESP32 v1: No filter available when using as wake-up source.
touch_pad_config(child->get_touch_pad(), child->get_wakeup_threshold());
#else
// ESP32-S2/S3 v2: Set threshold for wakeup
touch_pad_set_thresh(child->get_touch_pad(), child->get_wakeup_threshold());
#endif
}
}
if (!is_wakeup_source) {
// If no pad is configured for wakeup, deinitialize touch pad
touch_pad_deinit();
}
}
void ESP32TouchComponent::process_setup_mode_logging_(uint32_t now) {
if (this->setup_mode_ && now - this->setup_mode_last_log_print_ > SETUP_MODE_LOG_INTERVAL_MS) {
for (auto *child : this->children_) {
#ifdef USE_ESP32_VARIANT_ESP32
ESP_LOGD(TAG, "Touch Pad '%s' (T%" PRIu32 "): %" PRIu32, child->get_name().c_str(),
(uint32_t) child->get_touch_pad(), child->value_);
#else
// Read the value being used for touch detection
uint32_t value = this->read_touch_value(child->get_touch_pad());
ESP_LOGD(TAG, "Touch Pad '%s' (T%d): %d", child->get_name().c_str(), child->get_touch_pad(), value);
#endif
}
this->setup_mode_last_log_print_ = now;
}
}
bool ESP32TouchComponent::should_check_for_releases_(uint32_t now) {
if (now - this->last_release_check_ < this->release_check_interval_ms_) {
return false;
}
this->last_release_check_ = now;
return true;
}
void ESP32TouchComponent::publish_initial_state_if_needed_(ESP32TouchBinarySensor *child, uint32_t now) {
touch_pad_t pad = child->get_touch_pad();
if (!this->initial_state_published_[pad]) {
// Check if enough time has passed since startup
if (now > this->release_timeout_ms_) {
child->publish_initial_state(false);
this->initial_state_published_[pad] = true;
ESP_LOGV(TAG, "Touch Pad '%s' state: OFF (initial)", child->get_name().c_str());
}
}
}
void ESP32TouchComponent::check_and_disable_loop_if_all_released_(size_t pads_off) {
// Disable the loop to save CPU cycles when all pads are off and not in setup mode.
if (pads_off == this->children_.size() && !this->setup_mode_) {
this->disable_loop();
}
}
void ESP32TouchComponent::calculate_release_timeout_() {
// Calculate release timeout based on sleep cycle
// Design note: Hardware limitation - interrupts only fire reliably on touch (not release)
// We must use timeout-based detection for release events
// Formula: 3 sleep cycles converted to ms, with MINIMUM_RELEASE_TIME_MS minimum
// Per ESP-IDF docs: t_sleep = sleep_cycle / SOC_CLK_RC_SLOW_FREQ_APPROX
uint32_t rtc_freq = rtc_clk_slow_freq_get_hz();
// Calculate timeout as 3 sleep cycles
this->release_timeout_ms_ = (this->sleep_cycle_ * 1000 * 3) / rtc_freq;
if (this->release_timeout_ms_ < MINIMUM_RELEASE_TIME_MS) {
this->release_timeout_ms_ = MINIMUM_RELEASE_TIME_MS;
}
// Check for releases at 1/4 the timeout interval
// Since hardware doesn't generate reliable release interrupts, we must poll
// for releases in the main loop. Checking at 1/4 the timeout interval provides
// a good balance between responsiveness and efficiency.
this->release_check_interval_ms_ = this->release_timeout_ms_ / 4;
}
} // namespace esp32_touch
} // namespace esphome
#endif // USE_ESP32

View File

@@ -1,240 +0,0 @@
#ifdef USE_ESP32_VARIANT_ESP32
#include "esp32_touch.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include <algorithm>
#include <cinttypes>
// Include HAL for ISR-safe touch reading
#include "hal/touch_sensor_ll.h"
namespace esphome {
namespace esp32_touch {
static const char *const TAG = "esp32_touch";
void ESP32TouchComponent::setup() {
// Create queue for touch events
// Queue size calculation: children * 4 allows for burst scenarios where ISR
// fires multiple times before main loop processes. This is important because
// ESP32 v1 scans all pads on each interrupt, potentially sending multiple events.
if (!this->create_touch_queue_()) {
return;
}
touch_pad_init();
touch_pad_set_fsm_mode(TOUCH_FSM_MODE_TIMER);
// Set up IIR filter if enabled
if (this->iir_filter_enabled_()) {
touch_pad_filter_start(this->iir_filter_);
}
// Configure measurement parameters
#if ESP_IDF_VERSION_MAJOR >= 5
touch_pad_set_measurement_clock_cycles(this->meas_cycle_);
touch_pad_set_measurement_interval(this->sleep_cycle_);
#else
touch_pad_set_meas_time(this->sleep_cycle_, this->meas_cycle_);
#endif
touch_pad_set_voltage(this->high_voltage_reference_, this->low_voltage_reference_, this->voltage_attenuation_);
// Configure each touch pad
for (auto *child : this->children_) {
touch_pad_config(child->get_touch_pad(), child->get_threshold());
}
// Register ISR handler
esp_err_t err = touch_pad_isr_register(touch_isr_handler, this);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register touch ISR: %s", esp_err_to_name(err));
this->cleanup_touch_queue_();
this->mark_failed();
return;
}
// Calculate release timeout based on sleep cycle
this->calculate_release_timeout_();
// Enable touch pad interrupt
touch_pad_intr_enable();
}
void ESP32TouchComponent::dump_config() {
this->dump_config_base_();
if (this->iir_filter_enabled_()) {
ESP_LOGCONFIG(TAG, " IIR Filter: %" PRIu32 "ms", this->iir_filter_);
} else {
ESP_LOGCONFIG(TAG, " IIR Filter DISABLED");
}
if (this->setup_mode_) {
ESP_LOGCONFIG(TAG, " Setup Mode ENABLED");
}
this->dump_config_sensors_();
}
void ESP32TouchComponent::loop() {
const uint32_t now = App.get_loop_component_start_time();
// Print debug info for all pads in setup mode
this->process_setup_mode_logging_(now);
// Process any queued touch events from interrupts
// Note: Events are only sent by ISR for pads that were measured in that cycle (value != 0)
// This is more efficient than sending all pad states every interrupt
TouchPadEventV1 event;
while (xQueueReceive(this->touch_queue_, &event, 0) == pdTRUE) {
// Find the corresponding sensor - O(n) search is acceptable since events are infrequent
for (auto *child : this->children_) {
if (child->get_touch_pad() != event.pad) {
continue;
}
// Found matching pad - process it
child->value_ = event.value;
// The interrupt gives us the touch state directly
bool new_state = event.is_touched;
// Track when we last saw this pad as touched
if (new_state) {
this->last_touch_time_[event.pad] = now;
}
// Only publish if state changed - this filters out repeated events
if (new_state != child->last_state_) {
child->last_state_ = new_state;
child->publish_state(new_state);
// Original ESP32: ISR only fires when touched, release is detected by timeout
// Note: ESP32 v1 uses inverted logic - touched when value < threshold
ESP_LOGV(TAG, "Touch Pad '%s' state: ON (value: %" PRIu32 " < threshold: %" PRIu32 ")",
child->get_name().c_str(), event.value, child->get_threshold());
}
break; // Exit inner loop after processing matching pad
}
}
// Check for released pads periodically
if (!this->should_check_for_releases_(now)) {
return;
}
size_t pads_off = 0;
for (auto *child : this->children_) {
touch_pad_t pad = child->get_touch_pad();
// Handle initial state publication after startup
this->publish_initial_state_if_needed_(child, now);
if (child->last_state_) {
// Pad is currently in touched state - check for release timeout
// Using subtraction handles 32-bit rollover correctly
uint32_t time_diff = now - this->last_touch_time_[pad];
// Check if we haven't seen this pad recently
if (time_diff > this->release_timeout_ms_) {
// Haven't seen this pad recently, assume it's released
child->last_state_ = false;
child->publish_state(false);
ESP_LOGV(TAG, "Touch Pad '%s' state: OFF (timeout)", child->get_name().c_str());
pads_off++;
}
} else {
// Pad is already off
pads_off++;
}
}
// Disable the loop to save CPU cycles when all pads are off and not in setup mode.
// The loop will be re-enabled by the ISR when any touch pad is touched.
// v1 hardware limitations require us to check all pads are off because:
// - v1 only generates interrupts on touch events (not releases)
// - We must poll for release timeouts in the main loop
// - We can only safely disable when no pads need timeout monitoring
this->check_and_disable_loop_if_all_released_(pads_off);
}
void ESP32TouchComponent::on_shutdown() {
touch_pad_intr_disable();
touch_pad_isr_deregister(touch_isr_handler, this);
this->cleanup_touch_queue_();
if (this->iir_filter_enabled_()) {
touch_pad_filter_stop();
touch_pad_filter_delete();
}
// Configure wakeup pads if any are set
this->configure_wakeup_pads_();
}
void IRAM_ATTR ESP32TouchComponent::touch_isr_handler(void *arg) {
ESP32TouchComponent *component = static_cast<ESP32TouchComponent *>(arg);
touch_pad_clear_status();
// INTERRUPT BEHAVIOR: On ESP32 v1 hardware, the interrupt fires when ANY configured
// touch pad detects a touch (value goes below threshold). The hardware does NOT
// generate interrupts on release - only on touch events.
// The interrupt will continue to fire periodically (based on sleep_cycle) as long
// as any pad remains touched. This allows us to detect both new touches and
// continued touches, but releases must be detected by timeout in the main loop.
// Process all configured pads to check their current state
// Note: ESP32 v1 doesn't tell us which specific pad triggered the interrupt,
// so we must scan all configured pads to find which ones were touched
for (auto *child : component->children_) {
touch_pad_t pad = child->get_touch_pad();
// Read current value using ISR-safe API
uint32_t value;
if (component->iir_filter_enabled_()) {
uint16_t temp_value = 0;
touch_pad_read_filtered(pad, &temp_value);
value = temp_value;
} else {
// Use low-level HAL function when filter is not enabled
value = touch_ll_read_raw_data(pad);
}
// Skip pads with 0 value - they haven't been measured in this cycle
// This is important: not all pads are measured every interrupt cycle,
// only those that the hardware has updated
if (value == 0) {
continue;
}
// IMPORTANT: ESP32 v1 touch detection logic - INVERTED compared to v2!
// ESP32 v1: Touch is detected when capacitance INCREASES, causing the measured value to DECREASE
// Therefore: touched = (value < threshold)
// This is opposite to ESP32-S2/S3 v2 where touched = (value > threshold)
bool is_touched = value < child->get_threshold();
// Always send the current state - the main loop will filter for changes
// We send both touched and untouched states because the ISR doesn't
// track previous state (to keep ISR fast and simple)
TouchPadEventV1 event;
event.pad = pad;
event.value = value;
event.is_touched = is_touched;
// Send to queue from ISR - non-blocking, drops if queue full
BaseType_t x_higher_priority_task_woken = pdFALSE;
xQueueSendFromISR(component->touch_queue_, &event, &x_higher_priority_task_woken);
component->enable_loop_soon_any_context();
if (x_higher_priority_task_woken) {
portYIELD_FROM_ISR();
}
}
}
} // namespace esp32_touch
} // namespace esphome
#endif // USE_ESP32_VARIANT_ESP32

View File

@@ -1,398 +0,0 @@
#if defined(USE_ESP32_VARIANT_ESP32S2) || defined(USE_ESP32_VARIANT_ESP32S3)
#include "esp32_touch.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
namespace esp32_touch {
static const char *const TAG = "esp32_touch";
// Helper to update touch state with a known state
void ESP32TouchComponent::update_touch_state_(ESP32TouchBinarySensor *child, bool is_touched) {
// Always update timer when touched
if (is_touched) {
this->last_touch_time_[child->get_touch_pad()] = App.get_loop_component_start_time();
}
if (child->last_state_ != is_touched) {
// Read value for logging
uint32_t value = this->read_touch_value(child->get_touch_pad());
child->last_state_ = is_touched;
child->publish_state(is_touched);
if (is_touched) {
// ESP32-S2/S3 v2: touched when value > threshold
ESP_LOGV(TAG, "Touch Pad '%s' state: ON (value: %" PRIu32 " > threshold: %" PRIu32 ")", child->get_name().c_str(),
value, child->get_threshold());
} else {
ESP_LOGV(TAG, "Touch Pad '%s' state: OFF", child->get_name().c_str());
}
}
}
// Helper to read touch value and update state for a given child (used for timeout events)
bool ESP32TouchComponent::check_and_update_touch_state_(ESP32TouchBinarySensor *child) {
// Read current touch value
uint32_t value = this->read_touch_value(child->get_touch_pad());
// ESP32-S2/S3 v2: Touch is detected when value > threshold
bool is_touched = value > child->get_threshold();
this->update_touch_state_(child, is_touched);
return is_touched;
}
void ESP32TouchComponent::setup() {
// Create queue for touch events first
if (!this->create_touch_queue_()) {
return;
}
// Initialize touch pad peripheral
esp_err_t init_err = touch_pad_init();
if (init_err != ESP_OK) {
ESP_LOGE(TAG, "Failed to initialize touch pad: %s", esp_err_to_name(init_err));
this->mark_failed();
return;
}
// Configure each touch pad first
for (auto *child : this->children_) {
esp_err_t config_err = touch_pad_config(child->get_touch_pad());
if (config_err != ESP_OK) {
ESP_LOGE(TAG, "Failed to configure touch pad %d: %s", child->get_touch_pad(), esp_err_to_name(config_err));
}
}
// Set up filtering if configured
if (this->filter_configured_()) {
touch_filter_config_t filter_info = {
.mode = this->filter_mode_,
.debounce_cnt = this->debounce_count_,
.noise_thr = this->noise_threshold_,
.jitter_step = this->jitter_step_,
.smh_lvl = this->smooth_level_,
};
touch_pad_filter_set_config(&filter_info);
touch_pad_filter_enable();
}
if (this->denoise_configured_()) {
touch_pad_denoise_t denoise = {
.grade = this->grade_,
.cap_level = this->cap_level_,
};
touch_pad_denoise_set_config(&denoise);
touch_pad_denoise_enable();
}
if (this->waterproof_configured_()) {
touch_pad_waterproof_t waterproof = {
.guard_ring_pad = this->waterproof_guard_ring_pad_,
.shield_driver = this->waterproof_shield_driver_,
};
touch_pad_waterproof_set_config(&waterproof);
touch_pad_waterproof_enable();
}
// Configure measurement parameters
touch_pad_set_voltage(this->high_voltage_reference_, this->low_voltage_reference_, this->voltage_attenuation_);
// ESP32-S2/S3 always use the older API
touch_pad_set_meas_time(this->sleep_cycle_, this->meas_cycle_);
// Configure timeout if needed
touch_pad_timeout_set(true, TOUCH_PAD_THRESHOLD_MAX);
// Register ISR handler with interrupt mask
esp_err_t err =
touch_pad_isr_register(touch_isr_handler, this, static_cast<touch_pad_intr_mask_t>(TOUCH_PAD_INTR_MASK_ALL));
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register touch ISR: %s", esp_err_to_name(err));
this->cleanup_touch_queue_();
this->mark_failed();
return;
}
// Set thresholds for each pad BEFORE starting FSM
for (auto *child : this->children_) {
if (child->get_threshold() != 0) {
touch_pad_set_thresh(child->get_touch_pad(), child->get_threshold());
}
}
// Enable interrupts - only ACTIVE and TIMEOUT
// NOTE: We intentionally don't enable INACTIVE interrupts because they are unreliable
// on ESP32-S2/S3 hardware and sometimes don't fire. Instead, we use timeout-based
// release detection with the ability to verify the actual state.
touch_pad_intr_enable(static_cast<touch_pad_intr_mask_t>(TOUCH_PAD_INTR_MASK_ACTIVE | TOUCH_PAD_INTR_MASK_TIMEOUT));
// Set FSM mode before starting
touch_pad_set_fsm_mode(TOUCH_FSM_MODE_TIMER);
// Start FSM
touch_pad_fsm_start();
// Calculate release timeout based on sleep cycle
this->calculate_release_timeout_();
}
void ESP32TouchComponent::dump_config() {
this->dump_config_base_();
if (this->filter_configured_()) {
const char *filter_mode_s;
switch (this->filter_mode_) {
case TOUCH_PAD_FILTER_IIR_4:
filter_mode_s = "IIR_4";
break;
case TOUCH_PAD_FILTER_IIR_8:
filter_mode_s = "IIR_8";
break;
case TOUCH_PAD_FILTER_IIR_16:
filter_mode_s = "IIR_16";
break;
case TOUCH_PAD_FILTER_IIR_32:
filter_mode_s = "IIR_32";
break;
case TOUCH_PAD_FILTER_IIR_64:
filter_mode_s = "IIR_64";
break;
case TOUCH_PAD_FILTER_IIR_128:
filter_mode_s = "IIR_128";
break;
case TOUCH_PAD_FILTER_IIR_256:
filter_mode_s = "IIR_256";
break;
case TOUCH_PAD_FILTER_JITTER:
filter_mode_s = "JITTER";
break;
default:
filter_mode_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG,
" Filter mode: %s\n"
" Debounce count: %" PRIu32 "\n"
" Noise threshold coefficient: %" PRIu32 "\n"
" Jitter filter step size: %" PRIu32,
filter_mode_s, this->debounce_count_, this->noise_threshold_, this->jitter_step_);
const char *smooth_level_s;
switch (this->smooth_level_) {
case TOUCH_PAD_SMOOTH_OFF:
smooth_level_s = "OFF";
break;
case TOUCH_PAD_SMOOTH_IIR_2:
smooth_level_s = "IIR_2";
break;
case TOUCH_PAD_SMOOTH_IIR_4:
smooth_level_s = "IIR_4";
break;
case TOUCH_PAD_SMOOTH_IIR_8:
smooth_level_s = "IIR_8";
break;
default:
smooth_level_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Smooth level: %s", smooth_level_s);
}
if (this->denoise_configured_()) {
const char *grade_s;
switch (this->grade_) {
case TOUCH_PAD_DENOISE_BIT12:
grade_s = "BIT12";
break;
case TOUCH_PAD_DENOISE_BIT10:
grade_s = "BIT10";
break;
case TOUCH_PAD_DENOISE_BIT8:
grade_s = "BIT8";
break;
case TOUCH_PAD_DENOISE_BIT4:
grade_s = "BIT4";
break;
default:
grade_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Denoise grade: %s", grade_s);
const char *cap_level_s;
switch (this->cap_level_) {
case TOUCH_PAD_DENOISE_CAP_L0:
cap_level_s = "L0";
break;
case TOUCH_PAD_DENOISE_CAP_L1:
cap_level_s = "L1";
break;
case TOUCH_PAD_DENOISE_CAP_L2:
cap_level_s = "L2";
break;
case TOUCH_PAD_DENOISE_CAP_L3:
cap_level_s = "L3";
break;
case TOUCH_PAD_DENOISE_CAP_L4:
cap_level_s = "L4";
break;
case TOUCH_PAD_DENOISE_CAP_L5:
cap_level_s = "L5";
break;
case TOUCH_PAD_DENOISE_CAP_L6:
cap_level_s = "L6";
break;
case TOUCH_PAD_DENOISE_CAP_L7:
cap_level_s = "L7";
break;
default:
cap_level_s = "UNKNOWN";
break;
}
ESP_LOGCONFIG(TAG, " Denoise capacitance level: %s", cap_level_s);
}
if (this->setup_mode_) {
ESP_LOGCONFIG(TAG, " Setup Mode ENABLED");
}
this->dump_config_sensors_();
}
void ESP32TouchComponent::loop() {
const uint32_t now = App.get_loop_component_start_time();
// V2 TOUCH HANDLING:
// Due to unreliable INACTIVE interrupts on ESP32-S2/S3, we use a hybrid approach:
// 1. Process ACTIVE interrupts when pads are touched
// 2. Use timeout-based release detection (like v1)
// 3. But smarter than v1: verify actual state before releasing on timeout
// This prevents false releases if we missed interrupts
// In setup mode, periodically log all pad values
this->process_setup_mode_logging_(now);
// Process any queued touch events from interrupts
TouchPadEventV2 event;
while (xQueueReceive(this->touch_queue_, &event, 0) == pdTRUE) {
// Handle timeout events
if (event.intr_mask & TOUCH_PAD_INTR_MASK_TIMEOUT) {
// Resume measurement after timeout
touch_pad_timeout_resume();
// For timeout events, always check the current state
} else if (!(event.intr_mask & TOUCH_PAD_INTR_MASK_ACTIVE)) {
// Skip if not an active/timeout event
continue;
}
// Find the child for the pad that triggered the interrupt
for (auto *child : this->children_) {
if (child->get_touch_pad() != event.pad) {
continue;
}
if (event.intr_mask & TOUCH_PAD_INTR_MASK_TIMEOUT) {
// For timeout events, we need to read the value to determine state
this->check_and_update_touch_state_(child);
} else if (event.intr_mask & TOUCH_PAD_INTR_MASK_ACTIVE) {
// We only get ACTIVE interrupts now, releases are detected by timeout
this->update_touch_state_(child, true); // Always touched for ACTIVE interrupts
}
break;
}
}
// Check for released pads periodically (like v1)
if (!this->should_check_for_releases_(now)) {
return;
}
size_t pads_off = 0;
for (auto *child : this->children_) {
touch_pad_t pad = child->get_touch_pad();
// Handle initial state publication after startup
this->publish_initial_state_if_needed_(child, now);
if (child->last_state_) {
// Pad is currently in touched state - check for release timeout
// Using subtraction handles 32-bit rollover correctly
uint32_t time_diff = now - this->last_touch_time_[pad];
// Check if we haven't seen this pad recently
if (time_diff > this->release_timeout_ms_) {
// Haven't seen this pad recently - verify actual state
// Unlike v1, v2 hardware allows us to read the current state anytime
// This makes v2 smarter: we can verify if it's actually released before
// declaring a timeout, preventing false releases if interrupts were missed
bool still_touched = this->check_and_update_touch_state_(child);
if (still_touched) {
// Still touched! Timer was reset in update_touch_state_
ESP_LOGVV(TAG, "Touch Pad '%s' still touched after %" PRIu32 "ms timeout, resetting timer",
child->get_name().c_str(), this->release_timeout_ms_);
} else {
// Actually released - already handled by check_and_update_touch_state_
pads_off++;
}
}
} else {
// Pad is already off
pads_off++;
}
}
// Disable the loop when all pads are off and not in setup mode (like v1)
// We need to keep checking for timeouts, so only disable when all pads are confirmed off
this->check_and_disable_loop_if_all_released_(pads_off);
}
void ESP32TouchComponent::on_shutdown() {
// Disable interrupts
touch_pad_intr_disable(static_cast<touch_pad_intr_mask_t>(TOUCH_PAD_INTR_MASK_ACTIVE | TOUCH_PAD_INTR_MASK_TIMEOUT));
touch_pad_isr_deregister(touch_isr_handler, this);
this->cleanup_touch_queue_();
// Configure wakeup pads if any are set
this->configure_wakeup_pads_();
}
void IRAM_ATTR ESP32TouchComponent::touch_isr_handler(void *arg) {
ESP32TouchComponent *component = static_cast<ESP32TouchComponent *>(arg);
BaseType_t x_higher_priority_task_woken = pdFALSE;
// Read interrupt status
TouchPadEventV2 event;
event.intr_mask = touch_pad_read_intr_status_mask();
event.pad = touch_pad_get_current_meas_channel();
// Send event to queue for processing in main loop
xQueueSendFromISR(component->touch_queue_, &event, &x_higher_priority_task_woken);
component->enable_loop_soon_any_context();
if (x_higher_priority_task_woken) {
portYIELD_FROM_ISR();
}
}
uint32_t ESP32TouchComponent::read_touch_value(touch_pad_t pad) const {
// Unlike ESP32 v1, touch reads on ESP32-S2/S3 v2 are non-blocking operations.
// The hardware continuously samples in the background and we can read the
// latest value at any time without waiting.
uint32_t value = 0;
if (this->filter_configured_()) {
// Read filtered/smoothed value when filter is enabled
touch_pad_filter_read_smooth(pad, &value);
} else {
// Read raw value when filter is not configured
touch_pad_read_raw_data(pad, &value);
}
return value;
}
} // namespace esp32_touch
} // namespace esphome
#endif // USE_ESP32_VARIANT_ESP32S2 || USE_ESP32_VARIANT_ESP32S3

View File

@@ -183,7 +183,7 @@ async def to_code(config):
cg.add_platformio_option("board", config[CONF_BOARD])
cg.add_build_flag("-DUSE_ESP8266")
cg.set_cpp_standard("gnu++20")
cg.set_cpp_standard("gnu++17")
cg.add_define("ESPHOME_BOARD", config[CONF_BOARD])
cg.add_define("ESPHOME_VARIANT", "ESP8266")

View File

@@ -129,9 +129,9 @@ void IRAM_ATTR ISRInternalGPIOPin::digital_write(bool value) {
}
} else {
if (value != arg->inverted) {
*arg->out_set_reg = *arg->out_set_reg | 1;
*arg->out_set_reg |= 1;
} else {
*arg->out_set_reg = *arg->out_set_reg & ~1;
*arg->out_set_reg &= ~1;
}
}
}
@@ -147,7 +147,7 @@ void IRAM_ATTR ISRInternalGPIOPin::pin_mode(gpio::Flags flags) {
if (flags & gpio::FLAG_OUTPUT) {
*arg->mode_set_reg = arg->mask;
if (flags & gpio::FLAG_OPEN_DRAIN) {
*arg->control_reg = *arg->control_reg | (1 << GPCD);
*arg->control_reg |= 1 << GPCD;
} else {
*arg->control_reg &= ~(1 << GPCD);
}
@@ -155,21 +155,21 @@ void IRAM_ATTR ISRInternalGPIOPin::pin_mode(gpio::Flags flags) {
*arg->mode_clr_reg = arg->mask;
}
if (flags & gpio::FLAG_PULLUP) {
*arg->func_reg = *arg->func_reg | (1 << GPFPU);
*arg->control_reg = *arg->control_reg | (1 << GPCD);
*arg->func_reg |= 1 << GPFPU;
*arg->control_reg |= 1 << GPCD;
} else {
*arg->func_reg = *arg->func_reg & ~(1 << GPFPU);
*arg->func_reg &= ~(1 << GPFPU);
}
} else {
if (flags & gpio::FLAG_OUTPUT) {
*arg->mode_set_reg = *arg->mode_set_reg | 1;
*arg->mode_set_reg |= 1;
} else {
*arg->mode_set_reg = *arg->mode_set_reg & ~1;
*arg->mode_set_reg &= ~1;
}
if (flags & gpio::FLAG_PULLDOWN) {
*arg->func_reg = *arg->func_reg | (1 << GP16FPD);
*arg->func_reg |= 1 << GP16FPD;
} else {
*arg->func_reg = *arg->func_reg & ~(1 << GP16FPD);
*arg->func_reg &= ~(1 << GP16FPD);
}
}
}

View File

@@ -1,8 +1,7 @@
import logging
import esphome.codegen as cg
from esphome.components.ota import BASE_OTA_SCHEMA, ota_to_code
from esphome.components.ota_base import OTAComponent
from esphome.components.ota import BASE_OTA_SCHEMA, OTAComponent, ota_to_code
from esphome.config_helpers import merge_config
import esphome.config_validation as cv
from esphome.const import (
@@ -101,7 +100,6 @@ CONFIG_SCHEMA = (
esp32=3232,
rp2040=2040,
bk72xx=8892,
ln882x=8820,
rtl87xx=8892,
): cv.port,
cv.Optional(CONF_PASSWORD): cv.string,

View File

@@ -2,12 +2,12 @@
#ifdef USE_OTA
#include "esphome/components/md5/md5.h"
#include "esphome/components/network/util.h"
#include "esphome/components/ota_base/ota_backend.h" // For OTAComponent and callbacks
#include "esphome/components/ota_base/ota_backend_arduino_esp32.h"
#include "esphome/components/ota_base/ota_backend_arduino_esp8266.h"
#include "esphome/components/ota_base/ota_backend_arduino_libretiny.h"
#include "esphome/components/ota_base/ota_backend_arduino_rp2040.h"
#include "esphome/components/ota_base/ota_backend_esp_idf.h"
#include "esphome/components/ota/ota_backend.h"
#include "esphome/components/ota/ota_backend_arduino_esp32.h"
#include "esphome/components/ota/ota_backend_arduino_esp8266.h"
#include "esphome/components/ota/ota_backend_arduino_libretiny.h"
#include "esphome/components/ota/ota_backend_arduino_rp2040.h"
#include "esphome/components/ota/ota_backend_esp_idf.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
@@ -23,7 +23,7 @@ static constexpr u_int16_t OTA_BLOCK_SIZE = 8192;
void ESPHomeOTAComponent::setup() {
#ifdef USE_OTA_STATE_CALLBACK
ota_base::register_ota_platform(this);
ota::register_ota_platform(this);
#endif
this->server_ = socket::socket_ip_loop_monitored(SOCK_STREAM, 0); // monitored for incoming connections
@@ -94,7 +94,7 @@ void ESPHomeOTAComponent::loop() {
static const uint8_t FEATURE_SUPPORTS_COMPRESSION = 0x01;
void ESPHomeOTAComponent::handle_() {
ota_base::OTAResponseTypes error_code = ota_base::OTA_RESPONSE_ERROR_UNKNOWN;
ota::OTAResponseTypes error_code = ota::OTA_RESPONSE_ERROR_UNKNOWN;
bool update_started = false;
size_t total = 0;
uint32_t last_progress = 0;
@@ -102,7 +102,7 @@ void ESPHomeOTAComponent::handle_() {
char *sbuf = reinterpret_cast<char *>(buf);
size_t ota_size;
uint8_t ota_features;
std::unique_ptr<ota_base::OTABackend> backend;
std::unique_ptr<ota::OTABackend> backend;
(void) ota_features;
#if USE_OTA_VERSION == 2
size_t size_acknowledged = 0;
@@ -129,7 +129,7 @@ void ESPHomeOTAComponent::handle_() {
ESP_LOGD(TAG, "Starting update from %s", this->client_->getpeername().c_str());
this->status_set_warning();
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(ota_base::OTA_STARTED, 0.0f, 0);
this->state_callback_.call(ota::OTA_STARTED, 0.0f, 0);
#endif
if (!this->readall_(buf, 5)) {
@@ -140,16 +140,16 @@ void ESPHomeOTAComponent::handle_() {
if (buf[0] != 0x6C || buf[1] != 0x26 || buf[2] != 0xF7 || buf[3] != 0x5C || buf[4] != 0x45) {
ESP_LOGW(TAG, "Magic bytes do not match! 0x%02X-0x%02X-0x%02X-0x%02X-0x%02X", buf[0], buf[1], buf[2], buf[3],
buf[4]);
error_code = ota_base::OTA_RESPONSE_ERROR_MAGIC;
error_code = ota::OTA_RESPONSE_ERROR_MAGIC;
goto error; // NOLINT(cppcoreguidelines-avoid-goto)
}
// Send OK and version - 2 bytes
buf[0] = ota_base::OTA_RESPONSE_OK;
buf[0] = ota::OTA_RESPONSE_OK;
buf[1] = USE_OTA_VERSION;
this->writeall_(buf, 2);
backend = ota_base::make_ota_backend();
backend = ota::make_ota_backend();
// Read features - 1 byte
if (!this->readall_(buf, 1)) {
@@ -160,16 +160,16 @@ void ESPHomeOTAComponent::handle_() {
ESP_LOGV(TAG, "Features: 0x%02X", ota_features);
// Acknowledge header - 1 byte
buf[0] = ota_base::OTA_RESPONSE_HEADER_OK;
buf[0] = ota::OTA_RESPONSE_HEADER_OK;
if ((ota_features & FEATURE_SUPPORTS_COMPRESSION) != 0 && backend->supports_compression()) {
buf[0] = ota_base::OTA_RESPONSE_SUPPORTS_COMPRESSION;
buf[0] = ota::OTA_RESPONSE_SUPPORTS_COMPRESSION;
}
this->writeall_(buf, 1);
#ifdef USE_OTA_PASSWORD
if (!this->password_.empty()) {
buf[0] = ota_base::OTA_RESPONSE_REQUEST_AUTH;
buf[0] = ota::OTA_RESPONSE_REQUEST_AUTH;
this->writeall_(buf, 1);
md5::MD5Digest md5{};
md5.init();
@@ -220,14 +220,14 @@ void ESPHomeOTAComponent::handle_() {
if (!matches) {
ESP_LOGW(TAG, "Auth failed! Passwords do not match");
error_code = ota_base::OTA_RESPONSE_ERROR_AUTH_INVALID;
error_code = ota::OTA_RESPONSE_ERROR_AUTH_INVALID;
goto error; // NOLINT(cppcoreguidelines-avoid-goto)
}
}
#endif // USE_OTA_PASSWORD
// Acknowledge auth OK - 1 byte
buf[0] = ota_base::OTA_RESPONSE_AUTH_OK;
buf[0] = ota::OTA_RESPONSE_AUTH_OK;
this->writeall_(buf, 1);
// Read size, 4 bytes MSB first
@@ -243,12 +243,12 @@ void ESPHomeOTAComponent::handle_() {
ESP_LOGV(TAG, "Size is %u bytes", ota_size);
error_code = backend->begin(ota_size);
if (error_code != ota_base::OTA_RESPONSE_OK)
if (error_code != ota::OTA_RESPONSE_OK)
goto error; // NOLINT(cppcoreguidelines-avoid-goto)
update_started = true;
// Acknowledge prepare OK - 1 byte
buf[0] = ota_base::OTA_RESPONSE_UPDATE_PREPARE_OK;
buf[0] = ota::OTA_RESPONSE_UPDATE_PREPARE_OK;
this->writeall_(buf, 1);
// Read binary MD5, 32 bytes
@@ -261,7 +261,7 @@ void ESPHomeOTAComponent::handle_() {
backend->set_update_md5(sbuf);
// Acknowledge MD5 OK - 1 byte
buf[0] = ota_base::OTA_RESPONSE_BIN_MD5_OK;
buf[0] = ota::OTA_RESPONSE_BIN_MD5_OK;
this->writeall_(buf, 1);
while (total < ota_size) {
@@ -285,14 +285,14 @@ void ESPHomeOTAComponent::handle_() {
}
error_code = backend->write(buf, read);
if (error_code != ota_base::OTA_RESPONSE_OK) {
if (error_code != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error writing binary data to flash!, error_code: %d", error_code);
goto error; // NOLINT(cppcoreguidelines-avoid-goto)
}
total += read;
#if USE_OTA_VERSION == 2
while (size_acknowledged + OTA_BLOCK_SIZE <= total || (total == ota_size && size_acknowledged < ota_size)) {
buf[0] = ota_base::OTA_RESPONSE_CHUNK_OK;
buf[0] = ota::OTA_RESPONSE_CHUNK_OK;
this->writeall_(buf, 1);
size_acknowledged += OTA_BLOCK_SIZE;
}
@@ -304,7 +304,7 @@ void ESPHomeOTAComponent::handle_() {
float percentage = (total * 100.0f) / ota_size;
ESP_LOGD(TAG, "Progress: %0.1f%%", percentage);
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(ota_base::OTA_IN_PROGRESS, percentage, 0);
this->state_callback_.call(ota::OTA_IN_PROGRESS, percentage, 0);
#endif
// feed watchdog and give other tasks a chance to run
App.feed_wdt();
@@ -313,21 +313,21 @@ void ESPHomeOTAComponent::handle_() {
}
// Acknowledge receive OK - 1 byte
buf[0] = ota_base::OTA_RESPONSE_RECEIVE_OK;
buf[0] = ota::OTA_RESPONSE_RECEIVE_OK;
this->writeall_(buf, 1);
error_code = backend->end();
if (error_code != ota_base::OTA_RESPONSE_OK) {
if (error_code != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error ending update! error_code: %d", error_code);
goto error; // NOLINT(cppcoreguidelines-avoid-goto)
}
// Acknowledge Update end OK - 1 byte
buf[0] = ota_base::OTA_RESPONSE_UPDATE_END_OK;
buf[0] = ota::OTA_RESPONSE_UPDATE_END_OK;
this->writeall_(buf, 1);
// Read ACK
if (!this->readall_(buf, 1) || buf[0] != ota_base::OTA_RESPONSE_OK) {
if (!this->readall_(buf, 1) || buf[0] != ota::OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Reading back acknowledgement failed");
// do not go to error, this is not fatal
}
@@ -338,7 +338,7 @@ void ESPHomeOTAComponent::handle_() {
ESP_LOGI(TAG, "Update complete");
this->status_clear_warning();
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(ota_base::OTA_COMPLETED, 100.0f, 0);
this->state_callback_.call(ota::OTA_COMPLETED, 100.0f, 0);
#endif
delay(100); // NOLINT
App.safe_reboot();
@@ -355,7 +355,7 @@ error:
this->status_momentary_error("onerror", 5000);
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(ota_base::OTA_ERROR, 0.0f, static_cast<uint8_t>(error_code));
this->state_callback_.call(ota::OTA_ERROR, 0.0f, static_cast<uint8_t>(error_code));
#endif
}

View File

@@ -4,13 +4,13 @@
#ifdef USE_OTA
#include "esphome/core/helpers.h"
#include "esphome/core/preferences.h"
#include "esphome/components/ota_base/ota_backend.h"
#include "esphome/components/ota/ota_backend.h"
#include "esphome/components/socket/socket.h"
namespace esphome {
/// ESPHomeOTAComponent provides a simple way to integrate Over-the-Air updates into your app using ArduinoOTA.
class ESPHomeOTAComponent : public ota_base::OTAComponent {
class ESPHomeOTAComponent : public ota::OTAComponent {
public:
#ifdef USE_OTA_PASSWORD
void set_auth_password(const std::string &password) { password_ = password; }

View File

@@ -23,10 +23,8 @@ from esphome.const import (
CONF_INTERRUPT_PIN,
CONF_MANUAL_IP,
CONF_MISO_PIN,
CONF_MODE,
CONF_MOSI_PIN,
CONF_PAGE_ID,
CONF_PIN,
CONF_POLLING_INTERVAL,
CONF_RESET_PIN,
CONF_SPI,
@@ -51,7 +49,6 @@ PHYRegister = ethernet_ns.struct("PHYRegister")
CONF_PHY_ADDR = "phy_addr"
CONF_MDC_PIN = "mdc_pin"
CONF_MDIO_PIN = "mdio_pin"
CONF_CLK = "clk"
CONF_CLK_MODE = "clk_mode"
CONF_POWER_PIN = "power_pin"
CONF_PHY_REGISTERS = "phy_registers"
@@ -69,25 +66,32 @@ ETHERNET_TYPES = {
"KSZ8081RNA": EthernetType.ETHERNET_TYPE_KSZ8081RNA,
"W5500": EthernetType.ETHERNET_TYPE_W5500,
"OPENETH": EthernetType.ETHERNET_TYPE_OPENETH,
"DM9051": EthernetType.ETHERNET_TYPE_DM9051,
}
SPI_ETHERNET_TYPES = ["W5500", "DM9051"]
SPI_ETHERNET_TYPES = ["W5500"]
SPI_ETHERNET_DEFAULT_POLLING_INTERVAL = TimePeriodMilliseconds(milliseconds=10)
emac_rmii_clock_mode_t = cg.global_ns.enum("emac_rmii_clock_mode_t")
emac_rmii_clock_gpio_t = cg.global_ns.enum("emac_rmii_clock_gpio_t")
CLK_MODES = {
"CLK_EXT_IN": emac_rmii_clock_mode_t.EMAC_CLK_EXT_IN,
"CLK_OUT": emac_rmii_clock_mode_t.EMAC_CLK_OUT,
"GPIO0_IN": (
emac_rmii_clock_mode_t.EMAC_CLK_EXT_IN,
emac_rmii_clock_gpio_t.EMAC_CLK_IN_GPIO,
),
"GPIO0_OUT": (
emac_rmii_clock_mode_t.EMAC_CLK_OUT,
emac_rmii_clock_gpio_t.EMAC_APPL_CLK_OUT_GPIO,
),
"GPIO16_OUT": (
emac_rmii_clock_mode_t.EMAC_CLK_OUT,
emac_rmii_clock_gpio_t.EMAC_CLK_OUT_GPIO,
),
"GPIO17_OUT": (
emac_rmii_clock_mode_t.EMAC_CLK_OUT,
emac_rmii_clock_gpio_t.EMAC_CLK_OUT_180_GPIO,
),
}
CLK_MODES_DEPRECATED = {
"GPIO0_IN": ("CLK_EXT_IN", 0),
"GPIO0_OUT": ("CLK_OUT", 0),
"GPIO16_OUT": ("CLK_OUT", 16),
"GPIO17_OUT": ("CLK_OUT", 17),
}
MANUAL_IP_SCHEMA = cv.Schema(
{
@@ -149,18 +153,6 @@ def _validate(config):
f"({CORE.target_framework} {CORE.data[KEY_CORE][KEY_FRAMEWORK_VERSION]}), "
f"'{CONF_INTERRUPT_PIN}' is a required option for [ethernet]."
)
elif config[CONF_TYPE] != "OPENETH":
if CONF_CLK_MODE in config:
LOGGER.warning(
"[ethernet] The 'clk_mode' option is deprecated and will be removed in ESPHome 2026.1. "
"Please update your configuration to use 'clk' instead."
)
mode = CLK_MODES_DEPRECATED[config[CONF_CLK_MODE]]
config[CONF_CLK] = CLK_SCHEMA({CONF_MODE: mode[0], CONF_PIN: mode[1]})
del config[CONF_CLK_MODE]
elif CONF_CLK not in config:
raise cv.Invalid("'clk' is a required option for [ethernet].")
return config
@@ -184,21 +176,14 @@ PHY_REGISTER_SCHEMA = cv.Schema(
cv.Optional(CONF_PAGE_ID): cv.hex_int,
}
)
CLK_SCHEMA = cv.Schema(
{
cv.Required(CONF_MODE): cv.enum(CLK_MODES, upper=True, space="_"),
cv.Required(CONF_PIN): pins.internal_gpio_pin_number,
}
)
RMII_SCHEMA = BASE_SCHEMA.extend(
cv.Schema(
{
cv.Required(CONF_MDC_PIN): pins.internal_gpio_output_pin_number,
cv.Required(CONF_MDIO_PIN): pins.internal_gpio_output_pin_number,
cv.Optional(CONF_CLK_MODE): cv.enum(
CLK_MODES_DEPRECATED, upper=True, space="_"
cv.Optional(CONF_CLK_MODE, default="GPIO0_IN"): cv.enum(
CLK_MODES, upper=True, space="_"
),
cv.Optional(CONF_CLK): CLK_SCHEMA,
cv.Optional(CONF_PHY_ADDR, default=0): cv.int_range(min=0, max=31),
cv.Optional(CONF_POWER_PIN): pins.internal_gpio_output_pin_number,
cv.Optional(CONF_PHY_REGISTERS): cv.ensure_list(PHY_REGISTER_SCHEMA),
@@ -239,7 +224,6 @@ CONFIG_SCHEMA = cv.All(
"KSZ8081RNA": RMII_SCHEMA,
"W5500": SPI_SCHEMA,
"OPENETH": BASE_SCHEMA,
"DM9051": SPI_SCHEMA,
},
upper=True,
),
@@ -294,7 +278,7 @@ async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
if config[CONF_TYPE] in SPI_ETHERNET_TYPES:
if config[CONF_TYPE] == "W5500":
cg.add(var.set_clk_pin(config[CONF_CLK_PIN]))
cg.add(var.set_miso_pin(config[CONF_MISO_PIN]))
cg.add(var.set_mosi_pin(config[CONF_MOSI_PIN]))
@@ -312,9 +296,7 @@ async def to_code(config):
cg.add_define("USE_ETHERNET_SPI")
if CORE.using_esp_idf:
add_idf_sdkconfig_option("CONFIG_ETH_USE_SPI_ETHERNET", True)
add_idf_sdkconfig_option(
f"CONFIG_ETH_SPI_ETHERNET_{config[CONF_TYPE]}", True
)
add_idf_sdkconfig_option("CONFIG_ETH_SPI_ETHERNET_W5500", True)
elif config[CONF_TYPE] == "OPENETH":
cg.add_define("USE_ETHERNET_OPENETH")
add_idf_sdkconfig_option("CONFIG_ETH_USE_OPENETH", True)
@@ -322,8 +304,7 @@ async def to_code(config):
cg.add(var.set_phy_addr(config[CONF_PHY_ADDR]))
cg.add(var.set_mdc_pin(config[CONF_MDC_PIN]))
cg.add(var.set_mdio_pin(config[CONF_MDIO_PIN]))
cg.add(var.set_clk_mode(config[CONF_CLK][CONF_MODE]))
cg.add(var.set_clk_pin(config[CONF_CLK][CONF_PIN]))
cg.add(var.set_clk_mode(*CLK_MODES[config[CONF_CLK_MODE]]))
if CONF_POWER_PIN in config:
cg.add(var.set_power_pin(config[CONF_POWER_PIN]))
for register_value in config.get(CONF_PHY_REGISTERS, []):

Some files were not shown because too many files have changed in this diff Show More